Differential surface accessibility of alpha(187-199) in the Torpedo acetylcholine receptor alpha subunits. 1998

R H Fairclough, and G M Twaddle, and E Gudipati, and M Y Lin, and D P Richman
Department of Neurology, University of California, Davis, CA 95616, USA. rhfairclough@ucdavis.edu

We have probed the surface accessibility of residues alpha187 to alpha199 of the Torpedo acetylcholine receptor with monoclonal antibody 383C, which binds uniquely to these residues. However, 383C binds to only one of the two alpha subunits in the membrane-bound receptor, neither of the two subunits in carbamylcholine-desensitized receptor, and to both alpha subunits in Triton X-100 solubilized receptor. The kinetics of association and dissoci-ation of 383C with the peptide alpha(183-199) compared to those with the membrane-bound receptor suggest that all but a single hydrogen bond of affinity derives from contacts between this peptide and the monoclonal antibody paratope. Inhibition of 383C binding by alpha-bungarotoxin selectively directed to the alpha subunit correlated with the high-affinity d-tubocurarine binding site, along with a lack of inhibition by alpha-bungarotoxin directed to the alpha subunit correlated with the low-affinity d-tubocurarine binding site, suggests that the 383C epitope on the membrane-bound receptor resides on the alpha subunit associated with the high-affinity d-tubocurarine binding site. The results presented here suggest a structural basis for the differences between the two receptor acetylcholine binding sites.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014101 Torpedo A genus of the Torpedinidae family consisting of several species. Members of this family have powerful electric organs and are commonly called electric rays. Electric Rays,Torpedinidae,Rays, Electric

Related Publications

R H Fairclough, and G M Twaddle, and E Gudipati, and M Y Lin, and D P Richman
October 1985, The Biochemical journal,
R H Fairclough, and G M Twaddle, and E Gudipati, and M Y Lin, and D P Richman
April 1983, Nature,
R H Fairclough, and G M Twaddle, and E Gudipati, and M Y Lin, and D P Richman
August 1987, Proceedings of the National Academy of Sciences of the United States of America,
R H Fairclough, and G M Twaddle, and E Gudipati, and M Y Lin, and D P Richman
May 1982, Biochemical and biophysical research communications,
R H Fairclough, and G M Twaddle, and E Gudipati, and M Y Lin, and D P Richman
May 1984, Proceedings of the National Academy of Sciences of the United States of America,
R H Fairclough, and G M Twaddle, and E Gudipati, and M Y Lin, and D P Richman
May 1982, FEBS letters,
R H Fairclough, and G M Twaddle, and E Gudipati, and M Y Lin, and D P Richman
June 1983, The Journal of biological chemistry,
R H Fairclough, and G M Twaddle, and E Gudipati, and M Y Lin, and D P Richman
January 1979, Biochemistry,
R H Fairclough, and G M Twaddle, and E Gudipati, and M Y Lin, and D P Richman
October 1980, Proceedings of the National Academy of Sciences of the United States of America,
R H Fairclough, and G M Twaddle, and E Gudipati, and M Y Lin, and D P Richman
March 1986, Science (New York, N.Y.),
Copied contents to your clipboard!