Ascending projections of simple and complex cells in layer 6 of the cat striate cortex. 1998

J A Hirsch, and C A Gallagher, and J M Alonso, and L M Martinez
Laboratory of Neurobiology, The Rockefeller University, New York, New York 10021, USA.

Receptive field properties vary systematically across the different layers of the cat striate cortex. Understanding how these functional differences emerge requires a precise description of the interlaminar connections and the quality of information that they transmit. This study examines the contribution of the two physiological types of neuron in layer 6, simple and complex, to the cortical microcircuit. The approach was to make whole-cell recordings with dye-filled electrodes in vivo to correlate visual response property with intracortical projection pattern. The two simple cells we stained projected to layer 4, as previously reported (Gilbert and Wiesel, 1979; Martin and Whitteridge, 1984). Six of the eight complex cells that we labeled projected to the superficial layers, a pathway not previously described in the cat. The remaining two cells targeted the infragranular layers. Layer 4 is dominated by simple cells, whereas layers 5 and 2+3 are mainly composed of complex cells (Hubel and Wiesel, 1962; Gilbert, 1977). Hence, our results indicate that the ascending projections of simple cells in layer 6 target other simple cells. In parallel, the ascending projections of a population of complex cells in layer 6 favor other complex cells. Anatomical experiments in several species (Lund and Boothe,1975; Burkhalter,1989; Usrey and Fitzpatrick, 1996; Wiser and Callaway, 1996) had also demonstrated that layer 6 gives rise to two separate intracortical pathways. Pooling the results of these anatomical studies with our own suggests a common feature of the laminar organization: cells that project to different intracortical targets have distinct functional characteristics.

UI MeSH Term Description Entries
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013788 Thalamus Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain. Thalamencephalon,Thalamencephalons
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway
D048429 Cell Size The quantity of volume or surface area of CELLS. Cell Volume,Cell Sizes,Cell Volumes,Size, Cell,Sizes, Cell,Volume, Cell,Volumes, Cell

Related Publications

J A Hirsch, and C A Gallagher, and J M Alonso, and L M Martinez
September 1998, Nature neuroscience,
J A Hirsch, and C A Gallagher, and J M Alonso, and L M Martinez
April 1988, Journal of neurophysiology,
J A Hirsch, and C A Gallagher, and J M Alonso, and L M Martinez
September 1978, Journal of neurophysiology,
J A Hirsch, and C A Gallagher, and J M Alonso, and L M Martinez
January 1984, Vision research,
J A Hirsch, and C A Gallagher, and J M Alonso, and L M Martinez
November 1977, Experimental brain research,
J A Hirsch, and C A Gallagher, and J M Alonso, and L M Martinez
May 1973, The Journal of physiology,
J A Hirsch, and C A Gallagher, and J M Alonso, and L M Martinez
January 1976, Vision research,
J A Hirsch, and C A Gallagher, and J M Alonso, and L M Martinez
November 1993, Journal of neurophysiology,
J A Hirsch, and C A Gallagher, and J M Alonso, and L M Martinez
January 1981, Experimental brain research,
J A Hirsch, and C A Gallagher, and J M Alonso, and L M Martinez
January 1981, Experimental brain research,
Copied contents to your clipboard!