An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. II. Reappearance of morphologically normal synaptic contacts. 1976

D A Matthews, and C Cotman, and G Lynch

Intact synapses in the denervated area of the rat dentate gyrus are reduced to 14% of those normally present 2-4 days following a unilateral entorhinal lesion. By 160-240 days after lesion, the former entorhinal terminal zone is repopulated with new synapses. In all, there is more than a 5-fold increase in the density of intact synapses in the denervated zone between 2 and 240 days post-lesion, and the denervated zone of the molecular layer is restored to 80% of control values. The synapses are Gray type I and are formed on simple and complex spines which closely resemble those normally present. A few boutons have an abnormally large number of synaptic junctions. Reinnervation seems to progress at differential rates. Synapses are rapidly regained up to 30 days after operation, but thereafter the reacquisition of synaptic connections is much slower. Reinnervation is more rapid in the portion of the denervated zone nearest the granule cells, where the maximal densities are attained within 30 days. The time course of reinnervation differed from that of degeneration. A portion of the new synapses in the reinnervated molecular layer appear to arise by the assembly of new synaptic junctions. Over time, the number of post-synaptic contact sites along a given length of dendritic surface recovers, suggesting the formation of new synaptic sites. Our data indicate that granule cells retain a capacity even into adulthood to manufacture, position and assemble postsynaptic components of a synapse and, in concert with reactive afferents, form normal-appearing synapses.

UI MeSH Term Description Entries
D008297 Male Males
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

D A Matthews, and C Cotman, and G Lynch
December 1973, Brain research,
D A Matthews, and C Cotman, and G Lynch
March 1982, The Journal of comparative neurology,
D A Matthews, and C Cotman, and G Lynch
May 1994, Experimental neurology,
D A Matthews, and C Cotman, and G Lynch
April 2004, Brain research,
D A Matthews, and C Cotman, and G Lynch
March 1982, The Journal of comparative neurology,
D A Matthews, and C Cotman, and G Lynch
January 2004, Brain research,
D A Matthews, and C Cotman, and G Lynch
November 1966, The Journal of comparative neurology,
D A Matthews, and C Cotman, and G Lynch
September 1997, Neuroscience,
Copied contents to your clipboard!