Changes in cannabinoid receptor binding and mRNA levels in several brain regions of aged rats. 1998

F Berrendero, and J Romero, and L García-Gil, and I Suarez, and P De la Cruz, and J A Ramos, and J J Fernández-Ruiz
Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.

We have recently found that cannabinoid receptor binding and gene expression markedly decreased in extrapyramidal structures of aged rats. The present study was designed to analyze the possible existence of similar aging-induced changes in cannabinoid receptor binding and gene expression in brain regions other than extrapyramidal areas, but that also contain a significant population of cannabinoid receptors, such as the cerebellum, hippocampal structures, limbic and hypothalamic nuclei, the cerebral cortex and others. To this end, we analyzed cannabinoid receptor binding, using autoradiography, and cannabinoid receptor mRNA levels, using in situ hybridization, in slide-mounted brain sections obtained from young (3 month old) and aged (> 2 year old) rats. Results were as follows. In the cerebellum, aged rats exhibited a marked decrease in cannabinoid receptor binding in the molecular layer (-33.3%), although accompanied by no changes in mRNA levels in the granular layer. In the cerebral cortex, a small, although statistically significant, decrease in binding was found in the deep layer (VI) (-18.3%) of aged rats, whereas no changes were found in the superficial layer (I). As in the case of the cerebellum, mRNA levels did not change in the cerebral cortex layers (II-III and V-VI). The different regions of the Ammon's horn of the hippocampus exhibited similar cannabinoid receptor binding levels in aged and young rats. Interestingly, mRNA levels decreased in aged rats to a small, but statistically significant, extent (CA1: -26.1%; CA2: -21.6%; CA3: -14.4%). This was also seen in another hippocampal structure, the dentate gyrus (-14.6%), although in this region binding levels increased in aged rats (+28.4%). Two hypothalamic structures, the arcuate nucleus and the ventromedial hypothalamic nucleus, exhibited decreased cannabinoid receptor binding in aged rats (-31.1% and -30.3%, respectively), but this was not seen in the medial preoptic area. This was accompanied by no changes in mRNA levels in the ventromedial hypothalamic nucleus. In the limbic structures, aged rats exhibited similar binding levels to young rats. This was seen in the nucleus accumbens, septum nuclei and basolateral amygdaloid nucleus. However, mRNA levels slightly decreased in the basolateral amygdaloid nucleus (-13.4%), whereas they were not altered in the septum nuclei. Finally, other brain structures, such as the central gray substance and the brainstem, exhibited similar binding levels in aged and young rats. However, it is important to note that mRNA levels increased significantly (+211.2%) in the brainstem of aged rats, an area where the levels of binding and mRNA were very low in young rats. This marked increase may be related to an increase in the presence of glial elements in this region, as revealed by the increase in the immunoreactivity for glial fibrillary acidic protein observed in the brainstem of aged rats as compared to young animals. In summary, senescence was associated with changes in cannabinoid receptors in the cerebellum, the cerebral cortex, limbic and hypothalamic structures, the hippocampus and other brain regions. However, the changes observed (i) were not as marked and relevant as those early reported in extrapyramidal areas, and (ii) exhibited regional differences that might be attributed to the different roles played by these receptors in each region. Of particular relevance by their magnitude were the aging-induced decrease in binding found in the cerebellum and the hypothalamus, and the increase in mRNA levels observed in the brainstem. The latter might be related to an increase in the presence of glial cells which might contain cannabinoid receptor mRNA.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D008297 Male Males
D009025 Morpholines Tetrahydro-1,4-Oxazines,Tetrahydro 1,4 Oxazines
D009281 Naphthalenes Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002186 Cannabinoids Compounds having the cannabinoid structure. They were originally extracted from Cannabis sativa L. The most pharmacologically active constituents are TETRAHYDROCANNABINOL; CANNABINOL; and CANNABIDIOL. Cannabinoid
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons

Related Publications

F Berrendero, and J Romero, and L García-Gil, and I Suarez, and P De la Cruz, and J A Ramos, and J J Fernández-Ruiz
June 1999, Drug and alcohol dependence,
F Berrendero, and J Romero, and L García-Gil, and I Suarez, and P De la Cruz, and J A Ramos, and J J Fernández-Ruiz
June 1997, Brain research. Molecular brain research,
F Berrendero, and J Romero, and L García-Gil, and I Suarez, and P De la Cruz, and J A Ramos, and J J Fernández-Ruiz
July 1982, Life sciences,
F Berrendero, and J Romero, and L García-Gil, and I Suarez, and P De la Cruz, and J A Ramos, and J J Fernández-Ruiz
August 1994, Drug and alcohol dependence,
F Berrendero, and J Romero, and L García-Gil, and I Suarez, and P De la Cruz, and J A Ramos, and J J Fernández-Ruiz
January 1982, Neurobiology of aging,
F Berrendero, and J Romero, and L García-Gil, and I Suarez, and P De la Cruz, and J A Ramos, and J J Fernández-Ruiz
June 1989, Neuroscience letters,
F Berrendero, and J Romero, and L García-Gil, and I Suarez, and P De la Cruz, and J A Ramos, and J J Fernández-Ruiz
March 2002, Drug and alcohol dependence,
F Berrendero, and J Romero, and L García-Gil, and I Suarez, and P De la Cruz, and J A Ramos, and J J Fernández-Ruiz
January 1997, Brain research bulletin,
F Berrendero, and J Romero, and L García-Gil, and I Suarez, and P De la Cruz, and J A Ramos, and J J Fernández-Ruiz
March 1980, Life sciences,
F Berrendero, and J Romero, and L García-Gil, and I Suarez, and P De la Cruz, and J A Ramos, and J J Fernández-Ruiz
February 2008, Cellular and molecular neurobiology,
Copied contents to your clipboard!