KAS IV: a 3-ketoacyl-ACP synthase from Cuphea sp. is a medium chain specific condensing enzyme. 1998

K Dehesh, and P Edwards, and J Fillatti, and M Slabaugh, and J Byrne
Oils Division, Davis, CA 95616, USA. Katie.dehesh@monsanto.com

cDNA clones encoding a novel 3-ketoacyl-ACP synthase (KAS) have been isolated from Cuphea. The amino acid sequence of this enzyme is different from the previously characterized classes of KASs, designated KAS I and III, and similar to those designated as KAS II. To define the acyl chain specificity of this enzyme, we generated transgenic Brassica plants over-expressing the cDNA encoded protein in a seed specific manner. Expression of this enzyme in transgenic Brassica seeds which normally do not produce medium chain fatty acids does not result in any detectable modification of the fatty acid profile. However, co-expression of the Cuphea KAS with medium chain specific thioesterases, capable of production of either 12:0 or 8:0/10:0 fatty acids in seed oil, strongly enhances the levels of these medium chain fatty acids as compared with seed oil of plants expressing the thioesterases alone. By contrast, co-expression of the Cuphea KAS along with an 18:0/18.1-ACP thioesterase does not result in any detectable modification of the fatty acids. These data indicate that the Cuphea KAS reported here has a different acyl-chain specificity to the previously characterized KAS I, II and III. Therefore, we designate this enzyme KAS IV, a medium chain specific condensing enzyme.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D001937 Brassica A plant genus of the family Cruciferae. It contains many species and cultivars used as food including cabbage, cauliflower, broccoli, Brussel sprouts, kale, collard greens, MUSTARD PLANT; (B. alba, B. junica, and B. nigra), turnips (BRASSICA NAPUS) and rapeseed (BRASSICA RAPA). Broccoli,Brussel Sprout,Cabbage,Cauliflower,Collard Green,Kale,Cabbages,Collard Greens
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012639 Seeds The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield. Diaspores,Elaiosomes,Embryos, Plant,Plant Embryos,Plant Zygotes,Zygotes, Plant,Diaspore,Elaiosome,Embryo, Plant,Plant Embryo,Plant Zygote,Seed,Zygote, Plant
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015099 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase An enzyme of long-chain fatty acid synthesis, that adds a two-carbon unit from malonyl-(acyl carrier protein) to another molecule of fatty acyl-(acyl carrier protein), giving a beta-ketoacyl-(acyl carrier protein) with the release of carbon dioxide. EC 2.3.1.41. 3 Oxoacyl (Acyl Carrier Protein) Synthase,3-Keto-ACP Synthase,3-Oxoacyl (Acyl Carrier Protein) Synthase,3-Oxoacyl Synthetase,Acyl-Malonyl-ACP Condensing Enzyme,beta Keto Acyl Synthetase,beta Keto-Acyl Carrier Protein Synthase I,beta Keto-Acyl Carrier Protein Synthase II,beta Ketoacyl ACP Synthase,beta-Ketoacyl-Coenzyme A (CoA) Synthase,3 Keto ACP Synthase,3 Oxoacyl Synthetase,Acyl Malonyl ACP Condensing Enzyme,Condensing Enzyme, Acyl-Malonyl-ACP,Synthase, 3-Keto-ACP,Synthetase, 3-Oxoacyl,beta Keto Acyl Carrier Protein Synthase I,beta Keto Acyl Carrier Protein Synthase II
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

K Dehesh, and P Edwards, and J Fillatti, and M Slabaugh, and J Byrne
September 2019, MedChemComm,
K Dehesh, and P Edwards, and J Fillatti, and M Slabaugh, and J Byrne
June 2002, The Biochemical journal,
K Dehesh, and P Edwards, and J Fillatti, and M Slabaugh, and J Byrne
February 2017, ACS chemical biology,
K Dehesh, and P Edwards, and J Fillatti, and M Slabaugh, and J Byrne
October 2000, The Plant journal : for cell and molecular biology,
K Dehesh, and P Edwards, and J Fillatti, and M Slabaugh, and J Byrne
March 1998, The Plant journal : for cell and molecular biology,
K Dehesh, and P Edwards, and J Fillatti, and M Slabaugh, and J Byrne
January 2016, Frontiers in plant science,
K Dehesh, and P Edwards, and J Fillatti, and M Slabaugh, and J Byrne
March 1998, The Plant journal : for cell and molecular biology,
K Dehesh, and P Edwards, and J Fillatti, and M Slabaugh, and J Byrne
December 2000, Biochemical Society transactions,
K Dehesh, and P Edwards, and J Fillatti, and M Slabaugh, and J Byrne
January 2000, The Biochemical journal,
Copied contents to your clipboard!