Dynamics of histone acetylation in Chlamydomonas reinhardtii. 1998

J H Waterborg
Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110-2499, USA. waterborg@cctr.umkc.edu

The dynamic character of core histone post-translational acetylation in the unicellular green alga Chlamydomonas reinhardtii was studied by tritiated acetate incorporation. Histone H3 is the major target of acetylation, steady state, and in pulse and pulse-chase analyses. Acetylation turnover rates were measured by tracer labeling under steady-state conditions. Half-lives of 1.5-3 min were found for penta- to mono-acetylation of H3, dynamically acetylated to the 30% level. Twenty percent of H3 was multi-acetylated, on average with 3. 2 acetyl-lysines, all with rapid turnover. Deacetylase inhibitor trichostatin A (TSA) caused doubling of average acetylation levels, primarily as penta-acetylated H3, but half of H3 was not acetylated at all. The level of histone H4 acetylation was only half that of H3 and a major fraction of mono- and di-acetylated forms appeared static. The dynamic fraction had an average half-life of 3.5 min with higher turnover rates for more highly acetylated H4 forms. TSA, inhibiting less effectively deacetylases active on H4, strongly increased multi-acetylated H4 levels and doubled average acetylation. As for H3, half of histone H4 remained unacetylated. Acetylation of histone H2B was low and of H2A was barely measurable. Despite turnover with half-lives of approximately 2 min, no increase beyond di-acetylation was seen upon TSA treatment.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006877 Hydroxamic Acids A class of weak acids with the general formula R-CONHOH. Hydroxamic Acid,Acid, Hydroxamic,Acids, Hydroxamic
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D000105 Acetyl Coenzyme A Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent. Acetyl CoA,Acetyl-CoA,CoA, Acetyl,Coenzyme A, Acetyl
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations

Related Publications

J H Waterborg
November 2007, The Journal of cell biology,
J H Waterborg
January 1992, Cell motility and the cytoskeleton,
J H Waterborg
December 2019, The journal of physical chemistry. B,
J H Waterborg
December 2004, Plant physiology and biochemistry : PPB,
J H Waterborg
August 1991, Proceedings of the National Academy of Sciences of the United States of America,
J H Waterborg
November 1973, The Journal of cell biology,
J H Waterborg
May 1978, Journal of bacteriology,
J H Waterborg
January 1995, Methods in cell biology,
J H Waterborg
May 2024, The Plant journal : for cell and molecular biology,
Copied contents to your clipboard!