Butylated hydroxytoluene modulates DNA methylation in rats. 1998

B F Vanyushin, and N G Lopatina, and C K Wise, and F R Fullerton, and L A Poirier
Division of Molecular Basis of Ontogenesis, A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russia. Vanyushin@moo.genebee.msu.su

The major observation of this investigation is that a single intraperitoneal injection of butylated hydroxytoluene (BHT, 60 mg/kg body mass) results within a few hours in a strong increase in nuclear DNA(cytosine-5)-methyl transferase (methyl transferase) activity in the liver, kidneys, heart, spleen, brain and lungs of male rats. In most organs, the rise in methyl transferase activity is observed as early as 4 h after BHT injection, it reaches a maximum at 8 h and then, except for lungs and brain, gradually decreases to its initial level at 16 h. At the maximum induction times, the methyl transferase activity in liver, kidney and spleen increases by about 16-, 3- and 5-fold, respectively. A second BHT injection at 96 h results in a secondary rise in hepatic methyl transferase activity. Isoelectric focusing electrophoresis of control rat liver nuclear extracts showed methyl transferase activity in the pI 4.7 and 7.4 protein fractions. Both fractions methylate calf thymus DNA better than they do Drosophila melanogaster DNA. In similar extracts from BHT-treated rats, the methyl transferase activity is found in three protein fractions with pI values equal to 4.0, 6.2 and 9.5, respectively. Most of the methyl transferase fractions from the livers of BHT-treated rats methylate the completely unmethylated D. melanogaster DNA better than they do calf thymus DNA. Thus, BHT induces methyl transferase activity that preferably provides de novo DNA methylation. BHT injection had no significant effect on the hepatic contents of S-adenosylmethionine (AdoMet), S-adenosylhomocysteine (AdoHcy) and AdoMet/AdoHcy ratios. While BHT injection did not alter the 5-methyldeoxycytidine content in liver DNA, it did appear to alter such content in other organs. BHT appears to cause the reversible changes in the methylation status of an internal cytosine residue in some CCGG sites of the rat liver cytosine DNA-methyl transferase gene. BHT induces also hypomethylation of the renal methyl transferase gene and the hepatic c-Ha-ras gene. While BHT also increases the hepatic mRNA transcripts for the S-adenosylmethionine synthetase and the p53 genes, it had no detectable effects on the corresponding mRNA transcripts for methyl transferase homologous to murine methyl transferase. Thus, BHT induces tissue-specific reversible changes in methyl transferase activity and methylation of total DNA and various genes in rats. A strong increase in methyl transferase activity in rat liver is accompanied with BHT-induced change in the methyl transferase set observed in this organ.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D002084 Butylated Hydroxytoluene A di-tert-butyl PHENOL with antioxidant properties. Butylhydroxytoluene,2,6-Bis(1,1-dimethylethyl)-4-methylphenol,2,6-Di-t-butyl-4-methylphenol,2,6-Di-tert-butyl-4-methylphenol,2,6-Di-tert-butyl-p-cresol,4-Methyl-2,6-ditertbutylphenol,BHT,Di-tert-butyl-methylphenol,Dibunol,Ionol,Ionol (BHT),2,6 Di t butyl 4 methylphenol,2,6 Di tert butyl 4 methylphenol,2,6 Di tert butyl p cresol,4 Methyl 2,6 ditertbutylphenol,Di tert butyl methylphenol,Hydroxytoluene, Butylated
D003841 Deoxycytidine A nucleoside component of DNA composed of CYTOSINE and DEOXYRIBOSE. Cytosine Deoxyribonucleoside,Cytosine Deoxyriboside,Deoxyribonucleoside, Cytosine,Deoxyriboside, Cytosine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015257 DNA-Cytosine Methylases Methylases that are specific for CYTOSINE residues found on DNA. Cytosine-Specific DNA Methylase,DNA Modification Methylases (Cytosine-Specific),DNA-Cytosine Methylase,Modification Methylases (Cytosine-Specific),Site-Specific DNA Methyltransferase (Cytosine-Specific),Site-Specific Methyltransferases (Cytosine-Specific),Cytosine-Specific DNA Methylases,DNA Modification Methylases Cytosine Specific,Modification Methylases (Cytosine Specific),Site Specific Methyltransferases (Cytosine Specific),Cytosine Specific DNA Methylase,Cytosine Specific DNA Methylases,DNA Cytosine Methylase,DNA Cytosine Methylases,DNA Methylase, Cytosine-Specific,DNA Methylases, Cytosine-Specific,Methylase, Cytosine-Specific DNA,Methylase, DNA-Cytosine,Methylases, Cytosine-Specific DNA

Related Publications

B F Vanyushin, and N G Lopatina, and C K Wise, and F R Fullerton, and L A Poirier
July 1981, Acta pharmacologica et toxicologica,
B F Vanyushin, and N G Lopatina, and C K Wise, and F R Fullerton, and L A Poirier
January 1993, Archives of toxicology,
B F Vanyushin, and N G Lopatina, and C K Wise, and F R Fullerton, and L A Poirier
April 1977, Canadian journal of comparative medicine : Revue canadienne de medecine comparee,
B F Vanyushin, and N G Lopatina, and C K Wise, and F R Fullerton, and L A Poirier
April 1981, Food and cosmetics toxicology,
B F Vanyushin, and N G Lopatina, and C K Wise, and F R Fullerton, and L A Poirier
April 1981, Food and cosmetics toxicology,
B F Vanyushin, and N G Lopatina, and C K Wise, and F R Fullerton, and L A Poirier
January 1986, IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans,
B F Vanyushin, and N G Lopatina, and C K Wise, and F R Fullerton, and L A Poirier
December 2023, International journal of toxicology,
B F Vanyushin, and N G Lopatina, and C K Wise, and F R Fullerton, and L A Poirier
November 1983, Acta pharmacologica et toxicologica,
B F Vanyushin, and N G Lopatina, and C K Wise, and F R Fullerton, and L A Poirier
April 1988, Archives of toxicology,
B F Vanyushin, and N G Lopatina, and C K Wise, and F R Fullerton, and L A Poirier
January 1996, Free radical biology & medicine,
Copied contents to your clipboard!