A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4'-diisothiocyano stilbene-2,2'-disulfonic acid (DIDS) and its dihydro derivative (H2DIDS). 1976

S Lepke, and H Fasold, and M Pring, and H Passow

DIDS (4,4'-diisothiocyano stilbene-2,2'-disulfonic acid) and H2DIDS (4,4'-diisothiocyano-1,2-diphenyl ethane-2,2'-disulfonic acid) binding to the human red cell membrane proteins were studied as a function of concentration, temperature and time. Most binding sites were common to both. The common sites were in band 3 of SDS polyacrylamide gel electropherograms (Steck, 1974. J. Cell Biol. 62:1), an unidentified adjacent band, and glycophorin. Reversible and irreversible binding occurred; both inhibited sulfate equilibrium exchange. The time courses of irreversible binding to band 3 and total binding to the membrane as a whole were biphasic. About 20% of H2DIDS and greater 60% of DIDS binding were rapid, independent of temperature. Slow H2-DIDS binding was monoexponential, activation enthalpy 23 kcal/mole. The stoichiometry of irreversible H2DIDS binding to band 3 was 1.1-1.2, concentration-dependent. Under the conditions studied (0-50 muM, hematocrit 10%, 5-37 degrees C) binding to band 3 was a constant fraction of total binding, 0.7 for H2DIDS and 0.8 for DIDS. Inhibition was a linear function of total binding, binding to band 3, and therefore also to nonband 3 sites, with either inhibitor during both phases, H2DIDS inhibition was complete at 1.9 X 10(6) or 1.2 X 10(6) molecules/cell total and band 3 binding respectively. For DIDS the corresponding figures were 1.3 X 10(6) and 1.1 X 10(6). It is shown how reagents of mixed function can react with biphasic kinetics. Binding to multiple contiguous sites may exhibit concentration-dependent stoichiometry. Under such conditions a linear inhibition-binding relationship is neither a necessary nor a sufficient condition for the identification of transport sites.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D001557 Benzenesulfonates Organic salts and esters of benzenesulfonic acid.
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013267 Stilbenes Organic compounds that contain 1,2-diphenylethylene as a functional group. Stilbene,Stilbene Derivative,Stilbene Derivatives,Stilbenoid,Stilbenoids,Derivative, Stilbene,Derivatives, Stilbene
D013431 Sulfates Inorganic salts of sulfuric acid. Sulfate,Sulfates, Inorganic,Inorganic Sulfates
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

S Lepke, and H Fasold, and M Pring, and H Passow
December 1991, Biochemical pharmacology,
S Lepke, and H Fasold, and M Pring, and H Passow
October 1978, Naunyn-Schmiedeberg's archives of pharmacology,
S Lepke, and H Fasold, and M Pring, and H Passow
November 1986, Biochemical and biophysical research communications,
S Lepke, and H Fasold, and M Pring, and H Passow
November 1982, Plant physiology,
S Lepke, and H Fasold, and M Pring, and H Passow
May 1976, Biochemical and biophysical research communications,
S Lepke, and H Fasold, and M Pring, and H Passow
May 1984, Biochemical and biophysical research communications,
Copied contents to your clipboard!