Induction of apoptosis by deregulated expression of DNA topoisomerase IIalpha. 1998

J P McPherson, and G J Goldenberg
Department of Pharmacology, University of Toronto, Ontario, Canada.

DNA topoisomerase II (topo II) is an essential nuclear enzyme required for chromatin condensation and chromosome segregation during mitosis. Forced overexpression of topo IIalpha was found to cause morphological changes in recipient cells associated with apoptosis. This induction of apoptosis required nuclear localization of topo IIalpha, yet was independent of the DNA cleavage-religation activity of the enzyme. Apoptosis mediated by topo IIalpha deregulation was blocked by overexpression of crmA, a specific inhibitor of certain caspases, but not by bcl-2. topo IIalpha-induced apoptosis was also blocked by overexpression of a dominant-acting mutant of stress-activated protein kinase kinase (SEK1/MKK4) but not by the overexpression of its normal counterpart. Furthermore, apoptosis was blocked by coexpression of a dominant-negative form of the cyclin-dependent kinase cdk2 but not by dominant-negative cdc2. These results provide a rationale for the tight regulation of topo IIalpha levels through the cell cycle in that deregulation of topo IIalpha expression results in apoptotic cell death.

UI MeSH Term Description Entries
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases
D042846 CDC2-CDC28 Kinases A family of cell cycle-dependent kinases that are related in structure to CDC28 PROTEIN KINASE, S CEREVISIAE and the CDC2 PROTEIN KINASE found in mammalian species. CDC2-Related Kinases,CDC2+-CDC28-related Protein Kinase,CDC2-Related Kinase,CDC28-Related Kinases,CDC2 CDC28 Kinases,CDC2 Related Kinase,CDC2 Related Kinases,CDC2+ CDC28 related Protein Kinase,CDC28 Related Kinases
D048051 p38 Mitogen-Activated Protein Kinases A mitogen-activated protein kinase subfamily that regulates a variety of cellular processes including CELL GROWTH PROCESSES; CELL DIFFERENTIATION; APOPTOSIS; and cellular responses to INFLAMMATION. The P38 MAP kinases are regulated by CYTOKINE RECEPTORS and can be activated in response to bacterial pathogens. Mitogen-Activated Protein Kinase p38,p38 Mitogen-Activated Protein Kinase,p38 MAP Kinase,p38 MAPK,p38 Protein Kinase,p38 SAPK,MAP Kinase, p38,MAPK, p38,Mitogen Activated Protein Kinase p38,Protein Kinase, p38,p38 Mitogen Activated Protein Kinase,p38 Mitogen Activated Protein Kinases
D051357 Cyclin-Dependent Kinase 2 A key regulator of CELL CYCLE progression. It partners with CYCLIN E to regulate entry into S PHASE and also interacts with CYCLIN A to phosphorylate RETINOBLASTOMA PROTEIN. Its activity is inhibited by CYCLIN-DEPENDENT KINASE INHIBITOR P27 and CYCLIN-DEPENDENT KINASE INHIBITOR P21. Cdk2 Protein Kinase,CDK2 Protein,Cdc2-Related Protein Kinase,p33cdk2 Kinase,Cdc2 Related Protein Kinase,Cyclin Dependent Kinase 2

Related Publications

J P McPherson, and G J Goldenberg
July 2003, Biochemical and biophysical research communications,
J P McPherson, and G J Goldenberg
January 2002, Anticancer research,
J P McPherson, and G J Goldenberg
April 2000, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc,
J P McPherson, and G J Goldenberg
January 2000, Cell biochemistry and biophysics,
J P McPherson, and G J Goldenberg
January 2007, Molecular cancer therapeutics,
J P McPherson, and G J Goldenberg
February 2002, European journal of cancer (Oxford, England : 1990),
J P McPherson, and G J Goldenberg
April 2001, Toxicology letters,
J P McPherson, and G J Goldenberg
February 1999, British journal of cancer,
J P McPherson, and G J Goldenberg
January 2000, Brain tumor pathology,
J P McPherson, and G J Goldenberg
January 2002, Anticancer research,
Copied contents to your clipboard!