Cloning and characterization of three human cDNAs encoding mRNA (guanine-7-)-methyltransferase, an mRNA cap methylase. 1998

T Tsukamoto, and Y Shibagaki, and Y Niikura, and K Mizumoto
School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108, Japan.

The mRNA cap structure is synthesized by a series of reactions catalyzed by capping enzyme and mRNA (guanine-7-)-methyltransferase. mRNA (guanine-7-)-methyltransferase catalyzes the methylation of GpppN- at the guanine N7 position, which is an essential step for gene expression in eukaryotic cells. Here we isolated three human cDNAs encoding mRNA (guanine-7-)-methyltransferase termed hCMT1a, hCMT1b and hCMT1c. hCMT1a and hCMT1b encode 476 and 504 amino acids, respectively, and differ only at the region coding for the C-terminal portion of the enzyme after amino acid residue 465. The third cDNA hCMT1c seems to encode the same polypeptide as hCMT1a, however, the 3'-noncoding region of hCMT1c contains sequences corresponding to part of the C-terminal coding and noncoding regions of hCMT1b thus consisting of a mosaic of hCMT1a and hCMT1b. RT-PCR showed that all 3 types of mRNAs were expressed in every tissue examined. Comparison of the deduced amino acid sequences with those of other viral and cellular enzymes showed the regions which are highly conserved among mRNA (guanine-7-)-methyltransferases. The recombinant hCMT1a expressed in E. coli exhibited mRNA (guanine-7-)-methyltransferase activity. On the other hand, neither mRNA (guanine-7-)-methyltransferase nor mRNA (nucleoside-2'-O-)-methyltransferase activity was detected with the recombinant hCMT1b protein. Although the biological significance of the expression of these three mRNA (guanine-7-)-methyltransferase mRNA species remains unknown at present, the nucleotide sequences suggest that they are produced by alternative RNA splicing.

UI MeSH Term Description Entries
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012315 RNA Caps Nucleic acid structures found on the 5' end of eukaryotic cellular and viral messenger RNA and some heterogeneous nuclear RNAs. These structures, which are positively charged, protect the above specified RNAs at their termini against attack by phosphatases and other nucleases and promote mRNA function at the level of initiation of translation. Analogs of the RNA caps (RNA CAP ANALOGS), which lack the positive charge, inhibit the initiation of protein synthesis. RNA Cap,5' Capped RNA,5' mRNA Cap Structure,Cap, RNA,Caps, RNA,RNA, 5' Capped
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein
D018076 DNA, Complementary Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe. Complementary DNA,cDNA,cDNA Probes,Probes, cDNA

Related Publications

T Tsukamoto, and Y Shibagaki, and Y Niikura, and K Mizumoto
February 2000, Biochemical and biophysical research communications,
T Tsukamoto, and Y Shibagaki, and Y Niikura, and K Mizumoto
March 2006, RNA (New York, N.Y.),
T Tsukamoto, and Y Shibagaki, and Y Niikura, and K Mizumoto
January 2004, Molecular cell,
T Tsukamoto, and Y Shibagaki, and Y Niikura, and K Mizumoto
February 2024, Scientific reports,
T Tsukamoto, and Y Shibagaki, and Y Niikura, and K Mizumoto
October 2021, RSC chemical biology,
T Tsukamoto, and Y Shibagaki, and Y Niikura, and K Mizumoto
September 1984, Proceedings of the National Academy of Sciences of the United States of America,
T Tsukamoto, and Y Shibagaki, and Y Niikura, and K Mizumoto
April 1995, Journal of biochemistry,
T Tsukamoto, and Y Shibagaki, and Y Niikura, and K Mizumoto
March 2013, Acta parasitologica,
T Tsukamoto, and Y Shibagaki, and Y Niikura, and K Mizumoto
March 1992, Gene,
T Tsukamoto, and Y Shibagaki, and Y Niikura, and K Mizumoto
April 2009, RNA (New York, N.Y.),
Copied contents to your clipboard!