Dextromethorphan and dextrorphan in rats: common antitussives--different behavioural profiles. 1998

M Dematteis, and G Lallement, and M Mallaret
Unité de Neuropharmacologie, CRSSA, La Tronche, France.

Dextromethorphan (DM), a widely used and well-tolerated centrally acting antitussive, has been tested in several clinical trials for its antiepileptic and neuroprotective properties. However, the use of DM in these new clinical indications requires higher doses than antitussive doses, which may therefore induce phencyclidine (PCP)-like side-effects (memory and psychotomimetic disturbances) through its metabolic conversion to the active metabolite dextrorphan (DX), a more potent PCP-like non-competitive antagonist at the N-methyl-D-aspartate (NMDA) receptor than DM. Thus, we compared the behavioural effects in rats of intraperitoneal administration of DM and DX on motor activity in an open field and on learning and memory in the Morris water maze. DM (20, 30, 40 mg/kg) produced a dose-dependent decrease in both locomotion and stereotyped behaviour with a slight ataxia for the highest dose. DX (20, 30, 40 mg/kg) induced a dose-dependent increase in locomotion and stereotypies (swaying, turning) with moderate ataxia. Assessments of learning and memory were performed with lower doses of DM (10, 20, 30 mg/kg) and DX (5, 10, 15 mg/kg) because of motivational deficits (40 mg/kg of DM, 20-40 mg/kg of DX) and motor disorders (30, 40 mg/kg of DX) in the cue learning procedure. DX (10, 15 mg/kg) impaired spatial learning with a long-lasting effect for the highest dose whereas 5 mg/kg of DX and DM (10-30 mg/kg) did not. Only 15 mg/kg of DX appeared to slightly impair working memory. DM (10-30 mg/kg) and DX (5-15 mg/kg) did not impair reference memory. Thus, the two antitussives DM and DX induced different behavioural effects suggesting sedative effects for DM and PCP-like effects for DX. However, PCP-like side-effects with DM remain possible through its metabolic conversion to DX, with very high doses and/or in extensive metabolizers and/or in aged subjects prone to cognitive dysfunction. Therefore, the identification of DM metabolism phenotype, an adapted prescription and a pharmacological modulation of the DM metabolism may avoid adverse effects.

UI MeSH Term Description Entries
D008297 Male Males
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D003463 Cues Signals for an action; that specific portion of a perceptual field or pattern of stimuli to which a subject has learned to respond. Cue
D003915 Dextromethorphan Methyl analog of DEXTRORPHAN that shows high affinity binding to several regions of the brain, including the medullary cough center. This compound is an NMDA receptor antagonist (RECEPTORS, N-METHYL-D-ASPARTATE) and acts as a non-competitive channel blocker. It is one of the widely used ANTITUSSIVES, and is also used to study the involvement of glutamate receptors in neurotoxicity. d-Methorphan,Delsym,Dextromethorphan Hydrobromide,Dextromethorphan Hydrobromide, (+-)-Isomer,Dextromethorphan Hydrobromide, Monohydrate,Dextromethorphan Hydrochloride,Dextromethorphan, (+-)-Isomer,Racemethorphan,Hydrobromide, Dextromethorphan,Hydrochloride, Dextromethorphan
D003917 Dextrorphan Dextro form of levorphanol. It acts as a noncompetitive NMDA receptor antagonist, among other effects, and has been proposed as a neuroprotective agent. It is also a metabolite of DEXTROMETHORPHAN. (+-)-17-Methylmorphinan-3-ol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000996 Antitussive Agents Agents that suppress cough. They act centrally on the medullary cough center. EXPECTORANTS, also used in the treatment of cough, act locally. Antitussive,Antitussive Agent,Antitussive Drug,Cough Suppressant,Antitussive Drugs,Antitussives,Cough Suppressants,Agent, Antitussive,Agents, Antitussive,Drug, Antitussive,Drugs, Antitussive,Suppressant, Cough,Suppressants, Cough
D001259 Ataxia Impairment of the ability to perform smoothly coordinated voluntary movements. This condition may affect the limbs, trunk, eyes, pharynx, larynx, and other structures. Ataxia may result from impaired sensory or motor function. Sensory ataxia may result from posterior column injury or PERIPHERAL NERVE DISEASES. Motor ataxia may be associated with CEREBELLAR DISEASES; CEREBRAL CORTEX diseases; THALAMIC DISEASES; BASAL GANGLIA DISEASES; injury to the RED NUCLEUS; and other conditions. Coordination Impairment,Dyssynergia,Incoordination,Ataxia, Appendicular,Ataxia, Limb,Ataxia, Motor,Ataxia, Sensory,Ataxia, Truncal,Ataxy,Dyscoordination,Lack of Coordination,Tremor, Rubral,Appendicular Ataxia,Appendicular Ataxias,Ataxias,Ataxias, Appendicular,Ataxias, Limb,Ataxias, Motor,Ataxias, Sensory,Ataxias, Truncal,Coordination Impairments,Coordination Lack,Impairment, Coordination,Impairments, Coordination,Incoordinations,Limb Ataxia,Limb Ataxias,Motor Ataxia,Motor Ataxias,Rubral Tremor,Rubral Tremors,Sensory Ataxia,Sensory Ataxias,Tremors, Rubral,Truncal Ataxia,Truncal Ataxias
D013239 Stereotyped Behavior Relatively invariant mode of behavior elicited or determined by a particular situation; may be verbal, postural, or expressive. Behavior, Stereotyped,Behaviors, Stereotyped,Stereotyped Behaviors

Related Publications

M Dematteis, and G Lallement, and M Mallaret
November 2006, Pharmacology, biochemistry, and behavior,
M Dematteis, and G Lallement, and M Mallaret
February 1987, Brain research,
M Dematteis, and G Lallement, and M Mallaret
September 1978, Journal of pharmaceutical sciences,
M Dematteis, and G Lallement, and M Mallaret
January 1988, Brain research,
M Dematteis, and G Lallement, and M Mallaret
January 1996, Acta neurologica Scandinavica,
M Dematteis, and G Lallement, and M Mallaret
January 1990, NIDA research monograph,
M Dematteis, and G Lallement, and M Mallaret
October 1991, Pharmacology, biochemistry, and behavior,
M Dematteis, and G Lallement, and M Mallaret
October 2016, Journal of analytical toxicology,
Copied contents to your clipboard!