Lack of uptake, release and action of UTP at sympathetic perivascular nerve terminals in rabbit ear artery. 1998

B Saïag, and V Shacoori, and P Bodin, and M Catheline, and G Burnstock
Laboratoire de Physiologie, Université de Rennes, Faculté de Pharmacie, Rennes, France.

A possible role of uridine 5'-triphosphate (UTP) and uridine at sympathetic nerve terminals was studied in the rabbit ear artery after incubation of isolated vessels with [3H]uridine or [3H]noradrenaline. It was found that [3H]uridine was taken up by rabbit ear artery. This uptake was largely suppressed after the removal of endothelium and was inhibited by ethidium bromide and dipyridamole. Chemical denervation of the vessels with 6-hydroxydopamine did not reduce the uptake. Following pre-incubation of the isolated vessels with [3H]uridine, there was a release of radioactivity from the superfused rabbit ear artery. UTP, UDP, UMP and uridine were detected by thin layer chromatography both in the superfusate and inside the vessels. Transmural electric stimulation (30 V, 5 Hz) induced a contraction of the vessels but did not increase the release of uridine nucleotides into the superfusate. [3H]Noradrenaline was released during electric stimulation and the addition of UTP (100 microM) had no effects on this release. To conclude, this study shows that in contrast to endothelial cells, the sympathetic nerve terminals of the rabbit ear artery do not take up uridine and do not release uridine-derived nucleotides. UTP at 100 microM is also unable to modulate the evoked release of noradrenaline. These results mainly confine the role of UTP in endothelium-derived vasodilatation via P2Y2 and/or P2Y4 receptors.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004996 Ethidium A trypanocidal agent and possible antiviral agent that is widely used in experimental cell biology and biochemistry. Ethidium has several experimentally useful properties including binding to nucleic acids, noncompetitive inhibition of nicotinic acetylcholine receptors, and fluorescence among others. It is most commonly used as the bromide. Ethidium Bromide,Homidium Bromide,Novidium,Bromide, Ethidium,Bromide, Homidium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B Saïag, and V Shacoori, and P Bodin, and M Catheline, and G Burnstock
January 2006, Neuroscience,
B Saïag, and V Shacoori, and P Bodin, and M Catheline, and G Burnstock
November 1985, British journal of pharmacology,
B Saïag, and V Shacoori, and P Bodin, and M Catheline, and G Burnstock
January 1988, Progress in neurobiology,
B Saïag, and V Shacoori, and P Bodin, and M Catheline, and G Burnstock
January 1987, Nature,
B Saïag, and V Shacoori, and P Bodin, and M Catheline, and G Burnstock
April 1980, The Journal of pharmacology and experimental therapeutics,
B Saïag, and V Shacoori, and P Bodin, and M Catheline, and G Burnstock
March 1973, The Journal of physiology,
B Saïag, and V Shacoori, and P Bodin, and M Catheline, and G Burnstock
May 1993, Biochemical Society transactions,
B Saïag, and V Shacoori, and P Bodin, and M Catheline, and G Burnstock
February 1989, The American journal of physiology,
B Saïag, and V Shacoori, and P Bodin, and M Catheline, and G Burnstock
March 1973, The Journal of physiology,
B Saïag, and V Shacoori, and P Bodin, and M Catheline, and G Burnstock
January 1987, Blood vessels,
Copied contents to your clipboard!