Peroxisomal and microsomal fatty acid oxidation in liver of rats after chronic ethanol consumption. 1998

M Orellana, and R Rodrigo, and E Valdés
ICBM, Programa de Farmacología, Molecular Y Clínica, Facultad de Medicina, Universidad de Chile, Santiago. morellan@machi.med.uchile.cl

1. Microsomal P450 and peroxisomal fatty acid oxidation activities were studied in liver of rats after long-term ethanol consumption. 2. Ethanol increased the microsomal lauric acid omega-hydroxylation and the aminopyrine N-demethylation catalyzed by cytochrome P450. 3. Ethanol increased peroxisomal beta-oxidation of palmitoyl CoA and catalase activity in liver. 4. Both microsomal and peroxisomal activities behaved in a coordinate way in the liver of rats with long-term ethanol consumption. 5. These results would support a role of microsomal omega-hydroxylation and peroxisomal beta-oxidation of fatty acids in an extramitochondrial pathway of lipid oxidation in the liver.

UI MeSH Term Description Entries
D007850 Lauric Acids 12-Carbon saturated monocarboxylic acids. Dodecanoic Acids,Acids, Dodecanoic,Acids, Lauric
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010171 Palmitoyl Coenzyme A A fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis. Palmitoyl CoA,Hexadecanoyl CoA,Palmityl CoA,CoA, Hexadecanoyl,CoA, Palmitoyl,CoA, Palmityl,Coenzyme A, Palmitoyl
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids

Related Publications

M Orellana, and R Rodrigo, and E Valdés
March 1997, General pharmacology,
M Orellana, and R Rodrigo, and E Valdés
September 1992, FEBS letters,
M Orellana, and R Rodrigo, and E Valdés
January 1997, Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology,
M Orellana, and R Rodrigo, and E Valdés
June 1983, Archives of biochemistry and biophysics,
M Orellana, and R Rodrigo, and E Valdés
August 1987, Clinical science (London, England : 1979),
M Orellana, and R Rodrigo, and E Valdés
August 1989, Biochemical and biophysical research communications,
M Orellana, and R Rodrigo, and E Valdés
January 1993, Surgery today,
Copied contents to your clipboard!