Regulation of tyrosine hydroxylase promoter activity by chronic morphine in TH9.0-LacZ transgenic mice. 1998

V A Boundy, and S J Gold, and C J Messer, and J Chen, and J H Son, and T H Joh, and E J Nestler
Laboratory of Molecular Psychiatry, Departments of Psychiatry and Neurobiology, Yale University School of Medicine and Connecticut Mental Health Center, New Haven, Connecticut 06508, USA.

Levels of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, are known to be upregulated in specific brain regions by chronic administration of drugs of abuse. Chronic morphine administration increases TH levels in the locus coeruleus and ventral tegmental area, whereas chronic cocaine administration increases TH levels in the ventral tegmental area only. While such upregulation of TH has been related to behavioral effects of the drugs, the mechanism underlying these adaptations has remained controversial. To study the possibility that upregulation of TH occurs at the transcriptional level, we investigated the effect of chronic morphine or cocaine treatment on the activity of the TH gene promoter (9.0 kb), coupled to the LacZ reporter gene, in transgenic mice. These TH9.0-LacZ mice have been shown to exhibit correct tissue-specific expression and regulation of the reporter gene. We show here that chronic (but not acute) exposure of the TH9.0-LacZ mice to morphine increases the expression of beta-galactosidase (which is encoded by the LacZ gene) in the locus coeruleus by twofold compared with sham-treated mice. In contrast, beta-galactosidase expression in the ventral tegmental area was decreased 20-25% by chronic morphine and unaffected by chronic cocaine administration. Similar results were obtained after analysis of TH mRNA levels in these brain regions by in situ hybridization. These results suggest that chronic morphine upregulates TH expression via transcriptional mechanisms in the locus coeruleus but by post-transcriptional mechanisms in the ventral tegmental area.

UI MeSH Term Description Entries
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D008297 Male Males
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

V A Boundy, and S J Gold, and C J Messer, and J Chen, and J H Son, and T H Joh, and E J Nestler
August 2002, Brain research. Molecular brain research,
V A Boundy, and S J Gold, and C J Messer, and J Chen, and J H Son, and T H Joh, and E J Nestler
January 1994, Neuroscience letters,
V A Boundy, and S J Gold, and C J Messer, and J Chen, and J H Son, and T H Joh, and E J Nestler
August 2005, Journal of neurochemistry,
V A Boundy, and S J Gold, and C J Messer, and J Chen, and J H Son, and T H Joh, and E J Nestler
June 2001, Neurobiology of disease,
V A Boundy, and S J Gold, and C J Messer, and J Chen, and J H Son, and T H Joh, and E J Nestler
October 2012, Journal of neuroscience research,
V A Boundy, and S J Gold, and C J Messer, and J Chen, and J H Son, and T H Joh, and E J Nestler
January 1977, Advances in biochemical psychopharmacology,
V A Boundy, and S J Gold, and C J Messer, and J Chen, and J H Son, and T H Joh, and E J Nestler
December 1992, Brain research. Molecular brain research,
V A Boundy, and S J Gold, and C J Messer, and J Chen, and J H Son, and T H Joh, and E J Nestler
August 1974, Research communications in chemical pathology and pharmacology,
V A Boundy, and S J Gold, and C J Messer, and J Chen, and J H Son, and T H Joh, and E J Nestler
December 2004, Journal of neurocytology,
V A Boundy, and S J Gold, and C J Messer, and J Chen, and J H Son, and T H Joh, and E J Nestler
December 2003, Biochemical and biophysical research communications,
Copied contents to your clipboard!