Membrane capacitance changes induced by thrombin and calcium in single endothelial cells cultured from human umbilical vein. 1998

T D Carter, and G Zupancic, and S M Smith, and C Wheeler-Jones, and D Ogden
National Institute for Medical Research, Mill Hill, London NW7 1AA,, UK.tcarter@nimr.mrc.ac.uk

1. Vesicular secretion from single human umbilical vein endothelial cells (HUVECs) was monitored by changes in membrane capacitance (Cm). Secretion was evoked by dialysis with strongly buffered intracellular free Ca2+ concentrations ([Ca2+]i), flash photolysis of Ca2+-loaded DM-nitrophen or caged InsP3, or by thrombin. [Ca2+]i was monitored spectrofluorimetrically with furaptra. The results show that a large, slowly rising component of vesicular secretion requires prolonged exposure to high [Ca2+]i. 2. Cm increased during intracellular perfusion with [Ca2+] buffered in the range 1.0-20 microM. Changes in Cm comprised an initial slowly rising small component of 0.1-0.5 pF followed by a faster rising larger component of up to approximately 7 pF, seen when [Ca2+]i > 2 microM and which was maximal at 10-20 microM Ca2+. 3. Thrombin evoked rapid initial elevations of [Ca2+]i to a peak of 7.1 +/- 1.5 microM (mean +/- s.e. m., n = 5) that declined within approximately 20-30 s with thrombin present either to resting levels or to a maintained elevated level of 2.0 +/- 0.7 microM (mean +/- s.e.m., range 1.0-3.6 microM, n = 3). Transient [Ca2+]i rises were associated with small, slowly rising increases in Cm of 0.1-0.2 pF, that recovered to pre-application levels over 2-3 min. Maintained elevations of [Ca2+]i caused larger, faster-rising sustained increases in Cm to 1.14 +/- 0.12 pF (mean +/- s.e.m., n = 3). Separate specific enzyme-linked immunosorbent assay (ELISA) showed that 1.0 U ml-1 thrombin produced secretion of von Willebrand factor in HUVEC cultures. 4. Short-lived [Ca2+]i elevations with a peak of 3-25 microM and a duration of approximately 20 s generated by flash photolysis of caged InsP3 or DM-nitrophen produced either no net change in Cm, or small slow increases of approximately 0.1-0.6 pF at up to 5 fF s-1 that recovered to pre-flash levels over 2-3 min. 5. Maintained elevations of [Ca2+]i in the range 1-28 microM produced by flash photolysis of DM-nitrophen caused large increases in Cm, up to approximately 4 pF, corresponding to approximately 25-30 % of the initial cell Cm. The maximum rate of change of Cm was up to 50 fF s-1 at steady [Ca2+] up to 20 microM; Cm recovered towards pre-flash levels only when [Ca2+] had declined.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums

Related Publications

T D Carter, and G Zupancic, and S M Smith, and C Wheeler-Jones, and D Ogden
August 1986, The Journal of biological chemistry,
T D Carter, and G Zupancic, and S M Smith, and C Wheeler-Jones, and D Ogden
April 1995, Prostaglandins, leukotrienes, and essential fatty acids,
T D Carter, and G Zupancic, and S M Smith, and C Wheeler-Jones, and D Ogden
March 2012, American journal of physiology. Cell physiology,
T D Carter, and G Zupancic, and S M Smith, and C Wheeler-Jones, and D Ogden
May 2002, Biochemical and biophysical research communications,
T D Carter, and G Zupancic, and S M Smith, and C Wheeler-Jones, and D Ogden
October 1988, British journal of pharmacology,
T D Carter, and G Zupancic, and S M Smith, and C Wheeler-Jones, and D Ogden
June 1996, Cellular signalling,
T D Carter, and G Zupancic, and S M Smith, and C Wheeler-Jones, and D Ogden
November 1994, The Journal of membrane biology,
T D Carter, and G Zupancic, and S M Smith, and C Wheeler-Jones, and D Ogden
March 1994, Biochemical and biophysical research communications,
T D Carter, and G Zupancic, and S M Smith, and C Wheeler-Jones, and D Ogden
January 1994, Microvascular research,
T D Carter, and G Zupancic, and S M Smith, and C Wheeler-Jones, and D Ogden
April 1989, Thrombosis research,
Copied contents to your clipboard!