Cytotoxicity and DNA fragmentation associated with sequential gemcitabine and 5-fluoro-2'-deoxyuridine in HT-29 colon cancer cells. 1998

Q Ren, and V Kao, and J L Grem
Developmental Therapeutics Department, Medicine Branch, Division of Clinical Sciences, National Cancer Institute, National Naval Medical Center, Bethesda, Maryland 20889-5105, USA.

The combined cytotoxic effects of the antimetabolites gemcitabine (dFdCyd) and 5-fluoro-2'-deoxyuridine (FdUrd) were studied. Cytotoxicity, biochemical perturbations, and DNA damage seen with dFdCyd and FdUrd alone and in combination were evaluated in HT-29 human colon cancer cells. A 4-h exposure to dFdCyd followed by FdUrd for 24 h produced more than additive cytotoxicity and marked S-phase accumulation. Cells progressed through the cell cycle, however, after a 22-h drug-free interval. [3H]dFdCyd was rapidly metabolized to the 5'-triphosphate and incorporated into DNA. [3H]FdUrd was anabolized exclusively to FdUrd monophosphate, and preexposure to dFdCyd did not affect FdUrd monophosphate formation. Thymidylate synthase catalytic activity was inhibited by 48% after a 4-h exposure to 10 nM FdUrd and by 80% after exposure to the combination. Sequential 4-h exposures to 15 nM dFdCyd and 10 nM FdUrd led to greater depletion of dTTP pools (29% of control) than with either drug alone. Greater effects on nascent DNA integrity were seen with sequential dFdCyd followed by FdUrd. Although parental DNA damage was not evident immediately after exposure to 15 nM dFdCyd for 4 h followed by 10 nM FdUrd for 24 h, high molecular mass DNA fragmentation was evident 72-96 h after drug removal. Sequential dFdCyd/FdUrd was associated with prominent disturbance of the cell cycle, dTTP pool depletion, dATP/dTTP imbalance, and nascent DNA damage. Induction of double-strand parental DNA damage and cell death was delayed, consistent with postmitotic apoptosis.

UI MeSH Term Description Entries
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D003841 Deoxycytidine A nucleoside component of DNA composed of CYTOSINE and DEOXYRIBOSE. Cytosine Deoxyribonucleoside,Cytosine Deoxyriboside,Deoxyribonucleoside, Cytosine,Deoxyriboside, Cytosine
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D005467 Floxuridine An antineoplastic antimetabolite that is metabolized to fluorouracil when administered by rapid injection; when administered by slow, continuous, intra-arterial infusion, it is converted to floxuridine monophosphate. It has been used to treat hepatic metastases of gastrointestinal adenocarcinomas and for palliation in malignant neoplasms of the liver and gastrointestinal tract. FUdR,Fluorodeoxyuridine,5-FUdR,5-Fluorodeoxyuridine,5 Fluorodeoxyuridine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000093542 Gemcitabine A deoxycytidine antimetabolite used as an antineoplastic agent. 2',2'-Difluoro-2'-Deoxycytidine,2',2'-Difluorodeoxycytidine,2'-Deoxy-2',2''-Difluorocytidine-5'-O-Monophosphate,2'-Deoxy-2'-Difluorocytidine,Gemcitabine Hydrochloride,Gemcitabine, (D-threo-pentafuranosyl)-Isomer,Gemcitabine, (alpha-D-threo-pentofuranosyl)-Isomer,Gemcitabine, (beta-D-threo-pentafuranosyl)-Isomer,Gemicitabine,2',2'-DFDC,Gemzar,LY 188011,LY-188011,dFdCyd,188011, LY,2' Deoxy 2' Difluorocytidine,2' Deoxy 2',2'' Difluorocytidine 5' O Monophosphate,Hydrochloride, Gemcitabine
D000964 Antimetabolites, Antineoplastic Antimetabolites that are useful in cancer chemotherapy. Antineoplastic Antimetabolites
D000971 Antineoplastic Combined Chemotherapy Protocols The use of two or more chemicals simultaneously or sequentially in the drug therapy of neoplasms. The drugs need not be in the same dosage form. Anticancer Drug Combinations,Antineoplastic Agents, Combined,Antineoplastic Chemotherapy Protocols,Antineoplastic Drug Combinations,Cancer Chemotherapy Protocols,Chemotherapy Protocols, Antineoplastic,Drug Combinations, Antineoplastic,Antineoplastic Combined Chemotherapy Regimens,Combined Antineoplastic Agents,Agent, Combined Antineoplastic,Agents, Combined Antineoplastic,Anticancer Drug Combination,Antineoplastic Agent, Combined,Antineoplastic Chemotherapy Protocol,Antineoplastic Drug Combination,Cancer Chemotherapy Protocol,Chemotherapy Protocol, Antineoplastic,Chemotherapy Protocol, Cancer,Chemotherapy Protocols, Cancer,Combinations, Antineoplastic Drug,Combined Antineoplastic Agent,Drug Combination, Anticancer,Drug Combination, Antineoplastic,Drug Combinations, Anticancer,Protocol, Antineoplastic Chemotherapy,Protocol, Cancer Chemotherapy,Protocols, Antineoplastic Chemotherapy,Protocols, Cancer Chemotherapy

Related Publications

Q Ren, and V Kao, and J L Grem
September 1981, The Journal of biological chemistry,
Q Ren, and V Kao, and J L Grem
January 1983, Molecular pharmacology,
Q Ren, and V Kao, and J L Grem
January 1991, Journal of nuclear biology and medicine (Turin, Italy : 1991),
Q Ren, and V Kao, and J L Grem
September 1974, Journal of medicinal chemistry,
Q Ren, and V Kao, and J L Grem
January 2021, Avicenna journal of medical biotechnology,
Q Ren, and V Kao, and J L Grem
February 1960, Cancer chemotherapy reports,
Copied contents to your clipboard!