A partial cDNA sequence of the ovine insulin receptor gene: evidence for alternative splicing of an exon 11 region and for tissue-specific regulation of receptor isoform expression in sheep muscle, adipose tissue and liver. 1998

P D McGrattan, and A R Wylie, and A J Bjourson
The Queen's University of Belfast, Belfast, UK.

Insulin is as integral and important to the management of metabolism in ruminants as it is in non-ruminants. The suggestion of a lowered ruminant sensitivity and/or responsivity to insulin may relate more to the insulin receptor than to the hormone itself. We screened an ovine cDNA library using degenerate primers and polymerase chain reaction (PCR) to detect and sequence a cDNA portion corresponding to exons 10, 11 and 12 of the human insulin receptor gene in which a 36 base pair (bp) segment (exon 11) is alternatively spliced to produce two distinct receptor isoforms differing in functional characteristics including binding affinity for insulin. The ovine cDNA segment (nucleotides 671 to 770) displayed 84, 84, and 78% nucleotide homology to equivalent segments from the human, rhesus monkey and rat respectively. Reverse transcription PCR (RT-PCR) of selected tissues (liver, m. longissimus dorsi, m. rectus capitis and omental, perirenal and subcutaneous fats) taken at slaughter from three male, pure Dutch Texel lambs (experiment 1) and five male Texel-Greyface crossbred lambs (experiment 2) revealed two mRNA products in each tissue (including spleen; experiment 2 only) corresponding to cDNAs of molecular sizes 161 and 197 bp -- a difference of 36 bp. Sequence alignment showed the 36 bp segment to be homologous to the alternatively spliced exon 11 region of the human insulin receptor gene and to be highly conserved with that from other species. The abundance of the exon 11(+) isoform in the purebred Texel genotype was significantly higher in liver than in perirenal fat and rectus capitis and longissimus dorsi skeletal muscles (P<0.05) and higher also than in subcutaneous and omental fats (P<0.01). There was, however, no difference in the abundance of the exon 11(+) isoform between the individual muscle and fat depots in this sheep genotype. The abundance of the exon 11(+) isoform in the crossbred Texel genotype was significantly higher in liver (P<0. 05) than in the muscles (rectus capitis, P<0.05; longissimus dorsi, P<0.001), all three fats (P<0.001) and spleen (P<0.001). In the crossbred genotype, the abundance of the exon 11(+) isoform was higher in skeletal muscle than in all three fat depots (P<0.001), in which the isoform abundance was similar. Altered ratios of expression of the two products of this alternative splicing event could determine tissue sensitivity and/or responsivity to insulin and provide a mechanism for the management of nutrient partitioning and nutrient utilisation between tissues which is fundamental to the growth of tissues and manipulation of carcass characteristics in meat-producing animals.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

P D McGrattan, and A R Wylie, and A J Bjourson
January 1994, International immunology,
P D McGrattan, and A R Wylie, and A J Bjourson
February 2009, Molecular and cellular biology,
P D McGrattan, and A R Wylie, and A J Bjourson
January 2011, PloS one,
P D McGrattan, and A R Wylie, and A J Bjourson
March 1994, The Journal of clinical endocrinology and metabolism,
P D McGrattan, and A R Wylie, and A J Bjourson
August 1998, Human molecular genetics,
P D McGrattan, and A R Wylie, and A J Bjourson
December 1990, Biochemical Society transactions,
Copied contents to your clipboard!