Changes in microtubule protofilament number induced by Taxol binding to an easily accessible site. Internal microtubule dynamics. 1998

J F Díaz, and J M Valpuesta, and P Chacón, and G Diakun, and J M Andreu
Centro de Investigaciones Biológicas, CSIC, Velázquez 144, 28006, Madrid, Spain.

We have investigated the accessibility of the Taxol-binding site and the effects of Taxol binding on the structures of assembled microtubules. Taxol and docetaxel readily bind to and dissociate from microtubules, reaching 95% ligand exchange equilibrium in less than 3 min under our solution conditions (microtubules were previously assembled from GTP-tubulin, GTP-tubulin and microtubule-associated proteins, or GDP-tubulin and taxoid). Microtubules assembled from purified tubulin with Taxol are known to have typically one protofilament less than with the analogue docetaxel and control microtubules. Surprisingly, Taxol binding and exchange induce changes in the structure of preformed microtubules in a relatively short time scale. Cryoelectron microscopy shows changes toward the protofilament number distribution characteristic of Taxol or docetaxel, with a half-time of approximately 0.5 min, employing GDP-tubulin-taxoid microtubules. Correspondingly, synchrotron x-ray solution scattering shows a reduction in the mean microtubule diameter upon Taxol binding to microtubules assembled from GTP-tubulin in glycerol-containing buffer, with a structural relaxation half-time of approximately 1 min. These results imply that microtubules can exchange protofilaments upon Taxol binding, due to internal dynamics along the microtubule wall. The simplest interpretation of the relatively fast taxoid exchange observed and labeling of cellular microtubules with fluorescent taxoids, is that the Taxol-binding site is at the outer microtubule surface. On the contrary, if Taxol binds at the microtubule lumen in agreement with the electron crystallographic structure of tubulin dimers, our results suggest that the inside of microtubules is easily accessible from the outer solution. Large pores or moving lattice defects in microtubules might facilitate the binding of taxoids, as well as of possible endogenous cellular ligands of the inner microtubule wall.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D014965 X-Rays Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source. Grenz Ray,Grenz Rays,Roentgen Ray,Roentgen Rays,X Ray,X-Ray,Xray,Radiation, X,X-Radiation,Xrays,Ray, Grenz,Ray, Roentgen,Ray, X,Rays, Grenz,Rays, Roentgen,Rays, X,X Radiation,X Rays,X-Radiations
D017239 Paclitaxel A cyclodecane isolated from the bark of the Pacific yew tree, TAXUS BREVIFOLIA. It stabilizes MICROTUBULES in their polymerized form leading to cell death. 7-epi-Taxol,Anzatax,Bris Taxol,NSC-125973,Onxol,Paclitaxel, (4 alpha)-Isomer,Paxene,Praxel,Taxol,Taxol A,7 epi Taxol,NSC 125973,NSC125973,Taxol, Bris
D020285 Cryoelectron Microscopy Electron microscopy involving rapid freezing of the samples. The imaging of frozen-hydrated molecules and organelles permits the best possible resolution closest to the living state, free of chemical fixatives or stains. Electron Cryomicroscopy,Cryo-electron Microscopy,Cryo electron Microscopy,Cryo-electron Microscopies,Cryoelectron Microscopies,Cryomicroscopies, Electron,Cryomicroscopy, Electron,Electron Cryomicroscopies,Microscopies, Cryo-electron,Microscopies, Cryoelectron,Microscopy, Cryo-electron,Microscopy, Cryoelectron

Related Publications

J F Díaz, and J M Valpuesta, and P Chacón, and G Diakun, and J M Andreu
September 1990, Journal of cell science,
J F Díaz, and J M Valpuesta, and P Chacón, and G Diakun, and J M Andreu
February 1995, Biochemistry,
J F Díaz, and J M Valpuesta, and P Chacón, and G Diakun, and J M Andreu
January 2009, Zeitschrift fur Naturforschung. C, Journal of biosciences,
J F Díaz, and J M Valpuesta, and P Chacón, and G Diakun, and J M Andreu
January 1998, Methods in enzymology,
J F Díaz, and J M Valpuesta, and P Chacón, and G Diakun, and J M Andreu
December 1994, The Journal of biological chemistry,
J F Díaz, and J M Valpuesta, and P Chacón, and G Diakun, and J M Andreu
January 2007, Biophysical journal,
J F Díaz, and J M Valpuesta, and P Chacón, and G Diakun, and J M Andreu
May 2023, Current protocols,
J F Díaz, and J M Valpuesta, and P Chacón, and G Diakun, and J M Andreu
June 2023, Current protocols,
J F Díaz, and J M Valpuesta, and P Chacón, and G Diakun, and J M Andreu
June 2022, Biophysical journal,
J F Díaz, and J M Valpuesta, and P Chacón, and G Diakun, and J M Andreu
November 2004, Journal of neuroscience research,
Copied contents to your clipboard!