Regulation of astrocyte morphology by RhoA and lysophosphatidic acid. 1998

G J Ramakers, and W H Moolenaar
Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.

Astrocytes in the CNS undergo morphological changes and start to proliferate after breakdown of the blood-brain barrier. In culture, proliferating astrocytes have a flat, polygonal shape. When treated with cAMP-raising agents, astrocytes adopt a stellate, process-bearing morphology resembling their in vivo appearance. Stellation is accompanied by loss of actin stress fibers and focal adhesions. Lysophosphatidic acid (LPA), a blood-borne mitogen that signals through its cognate G protein-coupled receptor, stimulates DNA synthesis in astrocytes and causes rapid reversal of cAMP-induced stellation. LPA reversal of stellation is initiated by f-actin reassembly and tyrosine phosphorylation of focal adhesion proteins such as paxillin. Botulinum C3 toxin, which inactivates the Rho GTPase, mimics cAMP-raising agents in inducing stellation, f-actin disassembly, paxillin dephosphorylation, and growth arrest. However, unlike cAMP-induced stellation, C3-induced stellation cannot be reversed by LPA. Conversely, astrocytes expressing activated RhoA fail to undergo cAMP-induced stellation. Thus, RhoA controls astrocyte morphology in that active RhoA directs LPA reversal of stellation, while inactivation of RhoA is sufficient to induce stellation.

UI MeSH Term Description Entries
D008246 Lysophospholipids Derivatives of PHOSPHATIDIC ACIDS that lack one of its fatty acyl chains due to its hydrolytic removal. Lysophosphatidic Acids,Lysophospholipid,Acids, Lysophosphatidic
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010750 Phosphoproteins Phosphoprotein
D001905 Botulinum Toxins Toxic proteins produced from the species CLOSTRIDIUM BOTULINUM. The toxins are synthesized as a single peptide chain which is processed into a mature protein consisting of a heavy chain and light chain joined via a disulfide bond. The botulinum toxin light chain is a zinc-dependent protease which is released from the heavy chain upon ENDOCYTOSIS into PRESYNAPTIC NERVE ENDINGS. Once inside the cell the botulinum toxin light chain cleaves specific SNARE proteins which are essential for secretion of ACETYLCHOLINE by SYNAPTIC VESICLES. This inhibition of acetylcholine release results in muscular PARALYSIS. Botulin,Botulinum Neurotoxin,Botulinum Neurotoxins,Clostridium botulinum Toxins,Botulinum Toxin,Neurotoxin, Botulinum,Neurotoxins, Botulinum,Toxin, Botulinum,Toxins, Botulinum,Toxins, Clostridium botulinum
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003571 Cytochalasin B A cytotoxic member of the CYTOCHALASINS. Phomin
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

G J Ramakers, and W H Moolenaar
September 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G J Ramakers, and W H Moolenaar
January 2008, Neurochemistry international,
G J Ramakers, and W H Moolenaar
May 2020, Cancers,
G J Ramakers, and W H Moolenaar
January 2010, Microcirculation (New York, N.Y. : 1994),
G J Ramakers, and W H Moolenaar
June 1993, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
G J Ramakers, and W H Moolenaar
June 2013, Frontiers in bioscience (Landmark edition),
G J Ramakers, and W H Moolenaar
October 2016, Arteriosclerosis, thrombosis, and vascular biology,
G J Ramakers, and W H Moolenaar
September 2014, Experimental lung research,
G J Ramakers, and W H Moolenaar
January 2022, Current drug targets,
Copied contents to your clipboard!