Regulation of renin release and intrarenal formation of angiotensin. Studies in the isolated perfused rat kidney. 1976

K G Hofbauer, and H Zschiedrich, and F Gross

1. Isolated rat kidneys were perfused at a constant pressure of 90 mmHg in a single-pass system with either a cell-free medium or a suspension of washed bovine red blood cells, free of the components of the renin-angiotensin system. In red blood cell perfused kidneys renal haemodynamics and sodium reabsorption corresponded closer to values observed in the intact rat than in cell-free perfused kidneys. 2. In red blood cell-perfused kidneys in the absence of plasma renin substrate autoregulation of renal blood flow was almost complete at pressures above 90 mmHg, provided that perfusion pressure was changed rapidly. 3. Renin release varied inversely with perfusion pressure within a pressure range from 50 to 150 mmHg; the greatest changes of renin release occurred, when perfusion pressure was reduced from 90 to 70 mmHg; maximal stimulation of renin release was observed at 50 mmHg. After reduction of perfusion pressure, renin release immediately started to rise and reached a new level within 5 min. Local reduction of perfusion pressure in small arteries and arterioles by the injection of microspheres induced a short-lasting decrease in renal plasma flow and a transient stimulation of renin release. 4. High concentrations of furosemide stimulated renin release by a direct intrarenal mechanism. 5. Isoproterenol stimulated renin release in low concentrations without a concomitant vasodilation, whereas high concentrations induced an increase in both renal plasma flow and renin release. The effects of isoproterenol were completely blocked by propranolol. 6. Sodium nitroprusside induced similar increases in renal plasma flow, as did high concentrations of isoproterenol, but only a small and slow increase in renin release was observed. 7. Angiotensin II (AII) suppressed renin release in concentrations corresponding to plasma levels measured in the intact rat independently of its vasoconstrictor effects, whereas vasopressin in antidiuretic concentrations did not affect renin release. 8. AII, AI, synthetic tetradecapeptide renin substrate (TDP), crude and purified rat plasma renin substrate induced a dose-dependent reduction in renal plasma flow. SQ 20 881, a competitive inhibitor of converting enzyme, and low doses of 1-Sar-8-Ala-AII (saralasin), a competitive antagonist of AII, did not change renal plasma flow, whereas high concentrations of saralasin had a vasoconstrictor effect on their own. 9. Saralasin inhibited the vasoconstrictor effects of AII and TDP to a similar degree. SQ 20 881 inhibited the vasoconstrictor effects of AI and purified renin substrate, but did not influence the actions of TDP and the crude renin substrate preparation. 10. From these data it is concluded, that AI is converted into AII within the kidney at a rate of 1-2%. The vasoconstriction induced by the crude renin substrate probably does not involve the AII receptors. TDP may act by itself on the AII receptors or via the direct intrarenal formation of AII...

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D005665 Furosemide A benzoic-sulfonamide-furan. It is a diuretic with fast onset and short duration that is used for EDEMA and chronic RENAL INSUFFICIENCY. Frusemide,Fursemide,Errolon,Frusemid,Furanthril,Furantral,Furosemide Monohydrochloride,Furosemide Monosodium Salt,Fusid,Lasix
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000808 Angiotensinogen An alpha-globulin of about 453 amino acids, depending on the species. It is produced by the liver in response to lowered blood pressure and secreted into blood circulation. Angiotensinogen is the inactive precursor of the ANGIOTENSINS produced in the body by successive enzyme cleavages. Cleavage of angiotensinogen by RENIN yields the decapeptide ANGIOTENSIN I. Further cleavage of angiotensin I (by ANGIOTENSIN CONVERTING ENZYME) yields the potent vasoconstrictor octapeptide ANGIOTENSIN II; and then, via other enzymes, other angiotensins also involved in the hemodynamic-regulating RENIN-ANGIOTENSIN SYSTEM. Hypertensinogen,Renin-Substrate,SERPINA8,Proangiotensin,Renin Substrate Tetradecapeptide,Serpin A8,Renin Substrate,Tetradecapeptide, Renin Substrate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K G Hofbauer, and H Zschiedrich, and F Gross
January 1980, Progress in biochemical pharmacology,
K G Hofbauer, and H Zschiedrich, and F Gross
July 1983, Kidney international,
K G Hofbauer, and H Zschiedrich, and F Gross
December 1980, Clinical science (London, England : 1979),
K G Hofbauer, and H Zschiedrich, and F Gross
October 1982, European journal of pharmacology,
K G Hofbauer, and H Zschiedrich, and F Gross
June 1982, Naunyn-Schmiedeberg's archives of pharmacology,
K G Hofbauer, and H Zschiedrich, and F Gross
January 1978, Klinische Wochenschrift,
K G Hofbauer, and H Zschiedrich, and F Gross
October 1985, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
K G Hofbauer, and H Zschiedrich, and F Gross
September 1979, Experientia,
K G Hofbauer, and H Zschiedrich, and F Gross
January 1981, The Journal of physiology,
K G Hofbauer, and H Zschiedrich, and F Gross
July 1972, Kidney international,
Copied contents to your clipboard!