Immediate toxicity of high multiplicities of Chlamydia psittaci for mouse fibroblasts (L cells). 1976

J W Moulder, and T P Hatch, and G I Byrne, and K R Kellogg

One hour after suspensions of mouse fibroblasts (L cells) were exposed to 500 to 1,000 L-cell 50% infectious doses of Chlamydia psittaci (6BC), the L cells failed to attach to and spread out on solid substrates, phagocytosed polystyrene latex spheres at reduced rates, incorporated less [14C]isoleucine into protein, and had smaller soluble pools of nucleoside triphosphates. The infected L cells began to die at 8 h and were all dead by 20 h. Lower multiplicities of infection took correspondingly longer to kill the L cells. These effects of high multiplicities of C. psittaci on L cells will be referred to collectively as immediate toxicity. Similar effects were obtained with other strains of C. psittaci and C. trachomatis and with other cell lines. Ultraviolet-inactivated C. psittaci retained the ability to cause immediate toxicity, but heat-inactivated chlamydiae did not. C.psittaci cells had to be ingested by L cells before they were immediately toxic but, once they were phagocytosed, they did not need to multiply or to synthesize macromolecules in order to cause immediate injury to their hosts. Immediate toxicity was not the result of depression of energy metabolism, changes in the levels of intracellular cyclic nucleotides, or release of hydrolases from lysosomes. It was suggested that a lesion is produced in the plasma membrane of the L cell every time it ingests a chlamydial cell, that each act of ingestion produces an independent lesion, and that their injurious effects are additive. Thus, the more ingestion lesions there are, the faster the host cell dies. It was also suggested that induced phagocytosis, inhibition of lysosomal fusion, and death of mice and of cells in culture may all depend on a single activity of C. psittaci.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D007532 Isoleucine An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. Alloisoleucine,Isoleucine, L-Isomer,L-Isoleucine,Isoleucine, L Isomer,L-Isomer Isoleucine
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D011830 Radiation Effects The effects of ionizing and nonionizing radiation upon living organisms, organs and tissues, and their constituents, and upon physiologic processes. It includes the effect of irradiation on food, drugs, and chemicals. Effects, Radiation,Effect, Radiation,Radiation Effect
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002691 Chlamydophila psittaci A genus of CHLAMYDOPHILA infecting primarily birds. It contains eight known serovars, some of which infect more than one type of host, including humans. Chlamydia psittaci
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin

Related Publications

J W Moulder, and T P Hatch, and G I Byrne, and K R Kellogg
November 1977, Infection and immunity,
J W Moulder, and T P Hatch, and G I Byrne, and K R Kellogg
September 1976, Infection and immunity,
J W Moulder, and T P Hatch, and G I Byrne, and K R Kellogg
September 1982, Infection and immunity,
J W Moulder, and T P Hatch, and G I Byrne, and K R Kellogg
October 1981, Infection and immunity,
J W Moulder, and T P Hatch, and G I Byrne, and K R Kellogg
December 1980, Infection and immunity,
J W Moulder, and T P Hatch, and G I Byrne, and K R Kellogg
February 1983, Infection and immunity,
J W Moulder, and T P Hatch, and G I Byrne, and K R Kellogg
July 1979, Infection and immunity,
J W Moulder, and T P Hatch, and G I Byrne, and K R Kellogg
July 1984, Infection and immunity,
J W Moulder, and T P Hatch, and G I Byrne, and K R Kellogg
February 1978, Infection and immunity,
J W Moulder, and T P Hatch, and G I Byrne, and K R Kellogg
November 1970, Canadian journal of microbiology,
Copied contents to your clipboard!