Ciproxifan and chemically related compounds are highly potent and selective histamine H3-receptor antagonists. 1998

M Kathmann, and E Schlicker, and I Marr, and S Werthwein, and H Stark, and W Schunack
Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany. m.kathmann@uni-bonn.de

We determined the affinities of five newly synthesized histamine H3-receptor antagonists in an H3-receptor binding assay and their potencies in a functional H3-receptor model. Furthermore, we determined their potencies in a histamine H2- and H1-receptor model. The compounds differ from histamine in that the ethylamine side chain is replaced by an aryl-substituted propyloxy chain and they differ from one another by varying substituents of the aryl rest. Iodoproxyfan, a highly potent and selective antagonist at H3 receptors, is structurally related to these five compounds. The specific binding of [3H]-Nalpha-methylhistamine to rat brain cortex membranes was monophasically displaced by each of the five compounds at pKi values ranging from 8.24 to 9.27. Inhibition by histamine of the electrically evoked tritium overflow from mouse brain cortex slices preincubated with [3H]noradrenaline was antagonized by all compounds and the concentration-response curve was shifted to the right with apparent pA2 values ranging from 7.78 to 9.39. The five compounds under study possess negligible potencies at histamine H2 and H1 receptors studied in the guinea-pig right atrium and ileum, respectively (pD'2 or pKp values < or = 5.2). The present paper shows that the five compounds under study possess high affinities and potencies at histamine H3 receptors, four out of the five compounds in this respect being equipotent with iodoproxyfan. Like iodoproxyfan, the five compounds show an at least 1000-fold selectivity for H3 as compared to H2 and H1 receptors.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D006325 Heart Atria The chambers of the heart, to which the BLOOD returns from the circulation. Heart Atrium,Left Atrium,Right Atrium,Atria, Heart,Atrium, Heart,Atrium, Left,Atrium, Right
D006633 Histamine Antagonists Drugs that bind to but do not activate histamine receptors, thereby blocking the actions of histamine or histamine agonists. Classical antihistaminics block the histamine H1 receptors only. Antihistamine,Antihistamines,Histamine Antagonist,Antagonist, Histamine,Antagonists, Histamine

Related Publications

M Kathmann, and E Schlicker, and I Marr, and S Werthwein, and H Stark, and W Schunack
October 2000, Bioorganic & medicinal chemistry letters,
M Kathmann, and E Schlicker, and I Marr, and S Werthwein, and H Stark, and W Schunack
November 1998, The Journal of pharmacology and experimental therapeutics,
M Kathmann, and E Schlicker, and I Marr, and S Werthwein, and H Stark, and W Schunack
February 2001, Archiv der Pharmazie,
M Kathmann, and E Schlicker, and I Marr, and S Werthwein, and H Stark, and W Schunack
January 1987, Nature,
M Kathmann, and E Schlicker, and I Marr, and S Werthwein, and H Stark, and W Schunack
September 1988, Investigative radiology,
M Kathmann, and E Schlicker, and I Marr, and S Werthwein, and H Stark, and W Schunack
December 1998, Archiv der Pharmazie,
M Kathmann, and E Schlicker, and I Marr, and S Werthwein, and H Stark, and W Schunack
August 1995, Journal of medicinal chemistry,
M Kathmann, and E Schlicker, and I Marr, and S Werthwein, and H Stark, and W Schunack
May 1995, Journal of medicinal chemistry,
M Kathmann, and E Schlicker, and I Marr, and S Werthwein, and H Stark, and W Schunack
January 1995, Journal of medicinal chemistry,
M Kathmann, and E Schlicker, and I Marr, and S Werthwein, and H Stark, and W Schunack
May 2007, ChemMedChem,
Copied contents to your clipboard!