Lymphocyte emigration from high endothelial venules in rat lymph nodes. 1976

A O Anderson, and N D Anderson

Sequential events during lymphocyte emigration from high endothelial venuses (HEV) were studied by scanning and transmission electron microscopy combined with regional perfusion techniques. The results indicate that blood lymphocytes selectively adhere to HEV surfaces through microvilli which attach to shallow pits on the luminal surfaces of high endothelial cells. These intercellular contact points resist hydrodynamic and osmotic shearing forces, but can be disrupted by treatments which remove endothelial glycocalyx, hydrolyse lymphocyte surface glycoproteins, or chelate divalent cations. After this initial attachment phase, lymphocytes enter apical clefts between endothelial cells where they assume a motile configuration characterized by loss of microvilli and formation of irregular surface folds. Intramural lymphocytes adhere to adjacent endothelial cells through macular and villous contacts. Fibrillar electron-dense material traverses the 15-20 nm gap at these points of adhesion. Microtubules and microfilaments are also seen around areas of cytoplasmic constriction in these motile lymphocytes. The migrating lymphocytes show cytoplasmic polarity which is oriented in the direction of movement as they pass through extracellular spaces in the venular wall and cross successive laminations in the perivascular sheath to enter the node. Since these lymphocytes enter channels between endothelial cells which are stained by intralymphatic injections with horseradish peroxidase, it is suggested that their entry into the node depends upon migration along a chemotactic gradient.

UI MeSH Term Description Entries
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D008198 Lymph Nodes They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system. Lymph Node,Node, Lymph,Nodes, Lymph
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D004727 Endothelium A layer of epithelium that lines the heart, blood vessels (ENDOTHELIUM, VASCULAR), lymph vessels (ENDOTHELIUM, LYMPHATIC), and the serous cavities of the body. Endotheliums

Related Publications

A O Anderson, and N D Anderson
May 1997, Biochemical Society transactions,
A O Anderson, and N D Anderson
June 2010, Histology and histopathology,
A O Anderson, and N D Anderson
May 2004, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
A O Anderson, and N D Anderson
February 1991, Radiation research,
A O Anderson, and N D Anderson
April 2013, International journal of surgical pathology,
Copied contents to your clipboard!