Telomerase activity in microdissected human gliomas. 1999

R J Weil, and Y Y Wu, and A O Vortmeyer, and Y W Moon, and R M Delgado, and B G Fuller, and R R Lonser, and A T Remaley, and Z Zhuang
Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.

Future improvements in the diagnosis and treatment of human gliomas might rely on obtaining more specific information concerning the biologic characteristics of individual tumor cells. Telomerase, a ribonucleoprotein that synthesizes telomeres, has been reported to be expressed in a majority of human tumors, including several subtypes of brain tumor. We hypothesized that a quantitative assay for telomerase activity, combined with selective microdissection of tumor or normal brain cells, might reveal telomerase gain-of-function to be important in the pathogenesis of gliomas and that telomerase levels might have prognostic significance. We used tissue microdissection for selective analysis of tumor cells obtained from eight patients with glioma, one with a meningioma, and one with a primary B-cell lymphoma of the central nervous system. Normal brain tissue microdissected from another patient was used as a control. Telomerase activity was screened by an electrophoretic method and then assayed by a quantitative ELISA method. All of the eight gliomas had positive telomerase activity, as did the lymphoma. The meningioma and normal brain were negative. Quantitative analysis of telomerase activity did not correlate with tumor grade nor predict outcome. Selective tissue microdissection, combined with qualitative and quantitative telomerase assays, permits rapid and reliable detection of telomerase activity in diverse brain tumor tissues. These preliminary findings suggest that telomerase reactivation is a frequent event in glioma tumorigenesis that can be sensitively and specifically detected in gliomas of all histologic grades. Furthermore, specific detection of telomerase reactivation represents another mechanism by which tumor formation and progression might become the target of novel therapeutics.

UI MeSH Term Description Entries
D008297 Male Males
D008577 Meningeal Neoplasms Benign and malignant neoplastic processes that arise from or secondarily involve the meningeal coverings of the brain and spinal cord. Intracranial Meningeal Neoplasms,Spinal Meningeal Neoplasms,Benign Meningeal Neoplasms,Leptomeningeal Neoplasms,Malignant Meningeal Neoplasms,Meningeal Cancer,Meningeal Neoplasms, Benign,Meningeal Neoplasms, Intracranial,Meningeal Neoplasms, Malignant,Meningeal Tumors,Neoplasms, Leptomeningeal,Neoplasms, Meningeal,Benign Meningeal Neoplasm,Cancer, Meningeal,Cancers, Meningeal,Intracranial Meningeal Neoplasm,Leptomeningeal Neoplasm,Malignant Meningeal Neoplasm,Meningeal Cancers,Meningeal Neoplasm,Meningeal Neoplasm, Benign,Meningeal Neoplasm, Intracranial,Meningeal Neoplasm, Malignant,Meningeal Neoplasm, Spinal,Meningeal Neoplasms, Spinal,Meningeal Tumor,Neoplasm, Benign Meningeal,Neoplasm, Intracranial Meningeal,Neoplasm, Leptomeningeal,Neoplasm, Malignant Meningeal,Neoplasm, Meningeal,Neoplasm, Spinal Meningeal,Neoplasms, Benign Meningeal,Neoplasms, Intracranial Meningeal,Neoplasms, Malignant Meningeal,Neoplasms, Spinal Meningeal,Spinal Meningeal Neoplasm,Tumor, Meningeal,Tumors, Meningeal
D008579 Meningioma A relatively common neoplasm of the CENTRAL NERVOUS SYSTEM that arises from arachnoidal cells. The majority are well differentiated vascular tumors which grow slowly and have a low potential to be invasive, although malignant subtypes occur. Meningiomas have a predilection to arise from the parasagittal region, cerebral convexity, sphenoidal ridge, olfactory groove, and SPINAL CANAL. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2056-7) Benign Meningioma,Malignant Meningioma,Meningiomas, Multiple,Meningiomatosis,Angioblastic Meningioma,Angiomatous Meningioma,Cerebral Convexity Meningioma,Clear Cell Meningioma,Fibrous Meningioma,Hemangioblastic Meningioma,Hemangiopericytic Meningioma,Intracranial Meningioma,Intraorbital Meningioma,Intraventricular Meningioma,Meningotheliomatous Meningioma,Microcystic Meningioma,Olfactory Groove Meningioma,Papillary Meningioma,Parasagittal Meningioma,Posterior Fossa Meningioma,Psammomatous Meningioma,Secretory Meningioma,Sphenoid Wing Meningioma,Spinal Meningioma,Transitional Meningioma,Xanthomatous Meningioma,Angioblastic Meningiomas,Angiomatous Meningiomas,Benign Meningiomas,Cerebral Convexity Meningiomas,Clear Cell Meningiomas,Convexity Meningioma, Cerebral,Convexity Meningiomas, Cerebral,Fibrous Meningiomas,Groove Meningiomas, Olfactory,Hemangioblastic Meningiomas,Hemangiopericytic Meningiomas,Intracranial Meningiomas,Intraorbital Meningiomas,Intraventricular Meningiomas,Malignant Meningiomas,Meningioma, Angioblastic,Meningioma, Angiomatous,Meningioma, Benign,Meningioma, Cerebral Convexity,Meningioma, Clear Cell,Meningioma, Fibrous,Meningioma, Hemangioblastic,Meningioma, Hemangiopericytic,Meningioma, Intracranial,Meningioma, Intraorbital,Meningioma, Intraventricular,Meningioma, Malignant,Meningioma, Meningotheliomatous,Meningioma, Microcystic,Meningioma, Multiple,Meningioma, Olfactory Groove,Meningioma, Papillary,Meningioma, Parasagittal,Meningioma, Posterior Fossa,Meningioma, Psammomatous,Meningioma, Secretory,Meningioma, Sphenoid Wing,Meningioma, Spinal,Meningioma, Transitional,Meningioma, Xanthomatous,Meningiomas,Meningiomas, Angioblastic,Meningiomas, Angiomatous,Meningiomas, Benign,Meningiomas, Cerebral Convexity,Meningiomas, Clear Cell,Meningiomas, Fibrous,Meningiomas, Hemangioblastic,Meningiomas, Hemangiopericytic,Meningiomas, Intracranial,Meningiomas, Intraorbital,Meningiomas, Intraventricular,Meningiomas, Malignant,Meningiomas, Meningotheliomatous,Meningiomas, Microcystic,Meningiomas, Olfactory Groove,Meningiomas, Papillary,Meningiomas, Parasagittal,Meningiomas, Posterior Fossa,Meningiomas, Psammomatous,Meningiomas, Secretory,Meningiomas, Sphenoid Wing,Meningiomas, Spinal,Meningiomas, Transitional,Meningiomas, Xanthomatous,Meningiomatoses,Meningotheliomatous Meningiomas,Microcystic Meningiomas,Multiple Meningioma,Multiple Meningiomas,Olfactory Groove Meningiomas,Papillary Meningiomas,Parasagittal Meningiomas,Posterior Fossa Meningiomas,Psammomatous Meningiomas,Secretory Meningiomas,Sphenoid Wing Meningiomas,Spinal Meningiomas,Transitional Meningiomas,Wing Meningioma, Sphenoid,Wing Meningiomas, Sphenoid,Xanthomatous Meningiomas
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D004210 Dissection The separation and isolation of tissues for surgical purposes, or for the analysis or study of their structures. Dissections
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005260 Female Females

Related Publications

R J Weil, and Y Y Wu, and A O Vortmeyer, and Y W Moon, and R M Delgado, and B G Fuller, and R R Lonser, and A T Remaley, and Z Zhuang
May 1998, Neurosurgery,
R J Weil, and Y Y Wu, and A O Vortmeyer, and Y W Moon, and R M Delgado, and B G Fuller, and R R Lonser, and A T Remaley, and Z Zhuang
October 1997, Biochemical and biophysical research communications,
R J Weil, and Y Y Wu, and A O Vortmeyer, and Y W Moon, and R M Delgado, and B G Fuller, and R R Lonser, and A T Remaley, and Z Zhuang
January 1998, Cell vision : the journal of analytical morphology,
R J Weil, and Y Y Wu, and A O Vortmeyer, and Y W Moon, and R M Delgado, and B G Fuller, and R R Lonser, and A T Remaley, and Z Zhuang
June 1999, Journal of neuro-oncology,
R J Weil, and Y Y Wu, and A O Vortmeyer, and Y W Moon, and R M Delgado, and B G Fuller, and R R Lonser, and A T Remaley, and Z Zhuang
February 2002, International journal of oncology,
R J Weil, and Y Y Wu, and A O Vortmeyer, and Y W Moon, and R M Delgado, and B G Fuller, and R R Lonser, and A T Remaley, and Z Zhuang
May 2004, International journal of oncology,
R J Weil, and Y Y Wu, and A O Vortmeyer, and Y W Moon, and R M Delgado, and B G Fuller, and R R Lonser, and A T Remaley, and Z Zhuang
August 1999, The Journal of pathology,
R J Weil, and Y Y Wu, and A O Vortmeyer, and Y W Moon, and R M Delgado, and B G Fuller, and R R Lonser, and A T Remaley, and Z Zhuang
April 2001, Acta neuropathologica,
R J Weil, and Y Y Wu, and A O Vortmeyer, and Y W Moon, and R M Delgado, and B G Fuller, and R R Lonser, and A T Remaley, and Z Zhuang
September 1996, International journal of oncology,
R J Weil, and Y Y Wu, and A O Vortmeyer, and Y W Moon, and R M Delgado, and B G Fuller, and R R Lonser, and A T Remaley, and Z Zhuang
February 1997, Cancer research,
Copied contents to your clipboard!