Normal blood cells of anemic genotype in teratocarcinoma-derived mosaic mice. 1978

B Mintz, and C Cronmiller

In allophenic (mosaic) mice produced from blastocysts injected with teratocarcinoma stem cells of the OTT 6050 transplant line, an unexpected coat phenotype led to the discovery that the tumor-lineage cells carried the steel gene (Sl(J)/+). Because steel also causes a macrocytic anemia, mosaics comprising both genetically anemic and normal (+/+) cells fortuitously provided a unique opportunity to examine in vivo the etiology of this anemia in light of previous results indicating that the lesion is extrinsic to the erythroid cells. The experiment differs from previous ones, which involved postnatal grafting, in that here hematopoietic stem cells of anemic and normal genotypes coexist throughout all developmental stages, confronted by tissues of the hematopoietic microenvironment that consist partly or solely of genetically normal cells. Therefore, the possibility exists that the anemia might be completely prevented rather than secondarily ameliorated. Moreover, variation in proportion of normal-strain cells in the hematopoietic supporting tissues could serve to "titrate" minimal requirements to promote normal erythropoiesis. Mice with mixed populations of steel- and normal-genotype cells in blood and other tissues were identified by means of independent markers specific for tumor vs. blastocyst strains of origin. The clinical blood picture of these mosaics proved to be indistinguishable from that of normal controls, even when only a small minority of cells in all tissues of one of the animals were genetically normal. Phenotypic blood normalcy was shown, by occurrence of the typical steel anemia among F(1) germ-line progeny of mosaics, not to be due to any change in the capacity of the mutant gene to elicit the anemia. The results from the mosaics thus demonstrate that the primary expression of the steel lesion is indeed in the hematopoietic microenvironment. However, they also reveal that a surprisingly small complement of normal cells there appears to be adequate to prevent this anemia permanently. The hypothesis is advanced that relatively short-range diffusible substances, produced by cells in the microenvironment and required for normal erythropoiesis, may account for the inductive effectiveness of small cell numbers.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D009030 Mosaicism The occurrence in an individual of two or more cell populations of different chromosomal constitutions, derived from a single ZYGOTE, as opposed to CHIMERISM in which the different cell populations are derived from more than one zygote.
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005956 Glucose-6-Phosphate Isomerase An aldose-ketose isomerase that catalyzes the reversible interconversion of glucose 6-phosphate and fructose 6-phosphate. In prokaryotic and eukaryotic organisms it plays an essential role in glycolytic and gluconeogenic pathways. In mammalian systems the enzyme is found in the cytoplasm and as a secreted protein. This secreted form of glucose-6-phosphate isomerase has been referred to as autocrine motility factor or neuroleukin, and acts as a cytokine which binds to the AUTOCRINE MOTILITY FACTOR RECEPTOR. Deficiency of the enzyme in humans is an autosomal recessive trait, which results in CONGENITAL NONSPHEROCYTIC HEMOLYTIC ANEMIA. Glucosephosphate Isomerase,Phosphoglucose Isomerase,Phosphohexose Isomerase,Autocrine Motility Factor,Isomerase, Glucose 6 Phosphate,Neuroleukin,Tumor Autocrine Motility Factor,Tumor-Cell Autocrine Motility Factor,Factor, Autocrine Motility,Glucose 6 Phosphate Isomerase,Isomerase, Glucose-6-Phosphate,Isomerase, Glucosephosphate,Isomerase, Phosphoglucose,Isomerase, Phosphohexose,Motility Factor, Autocrine,Tumor Cell Autocrine Motility Factor
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000748 Anemia, Macrocytic Anemia characterized by larger than normal erythrocytes, increased mean corpuscular volume (MCV) and increased mean corpuscular hemoglobin (MCH). Anemias, Macrocytic,Macrocytic Anemia,Macrocytic Anemias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013724 Teratoma A true neoplasm composed of a number of different types of tissue, none of which is native to the area in which it occurs. It is composed of tissues that are derived from three germinal layers, the endoderm, mesoderm, and ectoderm. They are classified histologically as mature (benign) or immature (malignant). (From DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1642) Dysembryoma,Teratoid Tumor,Teratoma, Cystic,Teratoma, Mature,Teratoma, Benign,Teratoma, Immature,Teratoma, Malignant,Benign Teratoma,Benign Teratomas,Dysembryomas,Immature Teratoma,Immature Teratomas,Malignant Teratoma,Malignant Teratomas,Teratoid Tumors,Teratomas,Teratomas, Benign,Teratomas, Immature,Teratomas, Malignant,Tumor, Teratoid,Tumors, Teratoid
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

B Mintz, and C Cronmiller
September 1975, Proceedings of the National Academy of Sciences of the United States of America,
B Mintz, and C Cronmiller
December 1977, Proceedings of the National Academy of Sciences of the United States of America,
B Mintz, and C Cronmiller
December 1977, The American journal of pathology,
B Mintz, and C Cronmiller
January 1990, The Journal of pathology,
B Mintz, and C Cronmiller
May 1964, Science (New York, N.Y.),
B Mintz, and C Cronmiller
February 1969, Journal of cellular physiology,
B Mintz, and C Cronmiller
January 1980, American journal of hematology,
B Mintz, and C Cronmiller
December 1964, Journal of cellular and comparative physiology,
Copied contents to your clipboard!