GABA(B) receptors modulate short-term potentiation of spontaneous excitatory postsynaptic currents in the rat supraoptic nucleus in vitro. 2001

S B Kombian, and M Hirasawa, and W C Matowe, and Q J Pittman
Faculty of Pharmacy, Kuwait University, PO Box 24923, 13110, Safat, Kuwait. kombian@hsc.kuniv.edu.kw

High-frequency stimulation of afferents to the supraoptic nucleus (SON) results in a robust increase in the frequency and amplitude of pharmacologically isolated, tetrodotoxin-resistant, miniature excitatory postsynaptic currents (mEPSCs) lasting for 5-20 min. This increase in mEPSC frequency, termed short-term potentiation (STP), is tightly coupled to increases in action potential firing in magnocellular neurons (MCNs) suggesting a functional role for STP. gamma-Aminobutyric acid (GABA), acting selectively on GABA(B) receptors, has been shown to modulate action potential-dependent EPSCs, as well as mEPSCs in this nucleus. In this study, we examined the role of GABA in STP. Using in vitro hypothalamic slices containing the SON and the nystatin perforated-patch recording technique to record from MCNs, we tested the hypothesis that GABA modulates STP. Baclofen, a GABA(B) receptor agonist, caused a reversible decrease in the frequency of mEPSCs as well as a reduction in the magnitude and duration of STP. GABA(B) receptor antagonists blocked the baclofen-induced decrease in mEPSC frequency and reduction in STP. In addition, the antagonists by themselves increased basal mEPSC frequency while prolonging the duration of STP in most cells. By contrast, picrotoxin, a GABA(A) chloride channel blocker, had no effect on STP.These findings indicate that GABA is tonically present in the SON and its action at the GABA(B) receptor may determine the magnitude and duration of STP.

UI MeSH Term Description Entries
D008297 Male Males
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013495 Supraoptic Nucleus Hypothalamic nucleus overlying the beginning of the OPTIC TRACT. Accessory Supraoptic Group,Nucleus Supraopticus,Supraoptic Nucleus of Hypothalamus,Accessory Supraoptic Groups,Group, Accessory Supraoptic,Groups, Accessory Supraoptic,Hypothalamus Supraoptic Nucleus,Nucleus, Supraoptic,Supraoptic Group, Accessory,Supraoptic Groups, Accessory,Supraopticus, Nucleus
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018080 Receptors, GABA-B A subset of GABA RECEPTORS that signal through their interaction with HETEROTRIMERIC G-PROTEINS. Baclofen Receptors,GABA-B Receptors,Baclofen Receptor,GABA receptor rho1,GABA type B receptor, subunit 1,GABA(B)R1,GABA(B)R1 receptor,GABA(B)R1a protein,GABA(B)R1a receptor,GABA(B)R1b protein,GABA(B)R1b receptor,GABA-B Receptor,GABBR1 protein,GB1a protein,GB1b protein,GBR1B protein,Receptors, Baclofen,rho1 subunit, GABA receptor
D018755 GABA Agonists Endogenous compounds and drugs that bind to and activate GAMMA-AMINOBUTYRIC ACID receptors (RECEPTORS, GABA). gamma-Aminobutyric Acid Agonists,GABA Agonist,GABA Receptor Agonist,GABA Receptor Agonists,gamma-Aminobutyric Acid Agonist,Acid Agonist, gamma-Aminobutyric,Acid Agonists, gamma-Aminobutyric,Agonist, GABA,Agonist, GABA Receptor,Agonist, gamma-Aminobutyric Acid,Agonists, GABA,Agonists, GABA Receptor,Agonists, gamma-Aminobutyric Acid,Receptor Agonist, GABA,Receptor Agonists, GABA,gamma Aminobutyric Acid Agonist,gamma Aminobutyric Acid Agonists
D018756 GABA Antagonists Drugs that bind to but do not activate GABA RECEPTORS, thereby blocking the actions of endogenous GAMMA-AMINOBUTYRIC ACID and GABA RECEPTOR AGONISTS. gamma-Aminobutyric Acid Antagonists,GABA Antagonist,GABA Receptor Antagonists,Acid Antagonists, gamma-Aminobutyric,Antagonist, GABA,Antagonists, GABA,Antagonists, GABA Receptor,Antagonists, gamma-Aminobutyric Acid,Receptor Antagonists, GABA,gamma Aminobutyric Acid Antagonists
D019706 Excitatory Postsynaptic Potentials Depolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during neurotransmission. Excitatory postsynaptic potentials can singly or in summation reach the trigger threshold for ACTION POTENTIALS. EPSP,End Plate Potentials,Excitatory Postsynaptic Currents,Current, Excitatory Postsynaptic,Currents, Excitatory Postsynaptic,End Plate Potential,Excitatory Postsynaptic Current,Excitatory Postsynaptic Potential,Plate Potential, End,Plate Potentials, End,Postsynaptic Current, Excitatory,Postsynaptic Currents, Excitatory,Postsynaptic Potential, Excitatory,Postsynaptic Potentials, Excitatory,Potential, End Plate,Potential, Excitatory Postsynaptic,Potentials, End Plate,Potentials, Excitatory Postsynaptic
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

S B Kombian, and M Hirasawa, and W C Matowe, and Q J Pittman
November 2004, Journal of neuroendocrinology,
S B Kombian, and M Hirasawa, and W C Matowe, and Q J Pittman
October 2014, Brain research,
S B Kombian, and M Hirasawa, and W C Matowe, and Q J Pittman
August 1996, Journal of neurophysiology,
S B Kombian, and M Hirasawa, and W C Matowe, and Q J Pittman
March 2000, Journal of neuroendocrinology,
S B Kombian, and M Hirasawa, and W C Matowe, and Q J Pittman
March 2009, Brain research,
S B Kombian, and M Hirasawa, and W C Matowe, and Q J Pittman
January 1995, The Journal of physiology,
S B Kombian, and M Hirasawa, and W C Matowe, and Q J Pittman
November 1999, Journal of neuroendocrinology,
S B Kombian, and M Hirasawa, and W C Matowe, and Q J Pittman
November 2009, Journal of neuroendocrinology,
S B Kombian, and M Hirasawa, and W C Matowe, and Q J Pittman
April 1995, Journal of neurophysiology,
Copied contents to your clipboard!