Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. 2002

T J Brozoski, and C A Bauer, and D M Caspary
Division of Otolaryngology, Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, Illinois 62702, USA. tbrozoski@siumed.edu

Chinchillas with psychophysical evidence of chronic tinnitus were shown to have significantly elevated spontaneous activity and stimulus-evoked responses in putative fusiform cells of the dorsal cochlear nuclei (DCN). Chinchillas were psychophysically trained and tested before and after exposure to a traumatic unilateral 80 dB (sound pressure level) 4 kHz tone. Before exposure, two groups were matched in terms of auditory discrimination performance (noise, and 1, 4, 6, and 10 kHz tones). After exposure, a single psychophysical difference emerged between groups. The exposed group displayed enhanced discrimination of 1 kHz tones (p = 0.00027). Postexposure discrimination of other stimuli was unaffected. It was hypothesized that exposed animals experienced a chronic subjective tone (i.e., tinnitus), resulting from their trauma, and that features of this subjective tone were similar enough to 1 kHz to affect discrimination of 1 kHz objective signals. After psychophysical testing, single-unit recordings were obtained from each animal's DCN fusiform cell layer. Putative fusiform cells of exposed animals showed significantly (p = 0.0136) elevated spontaneous activity, compared with cells of unexposed animals. Putative fusiform cells of exposed animals showed a greater stimulus-evoked response to tones at 1 kHz (p = 0.0000006) and at characteristic-frequency (p = 0.0000009). This increased activity was more pronounced on the exposed side. No increase in stimulus-evoked responses was observed to other frequencies or noise. These parallel psychophysical and electrophysiological results are consistent with the hypothesis that chronic tonal tinnitus is associated with, and may result from, trauma-induced elevation of activity of DCN fusiform cells.

UI MeSH Term Description Entries
D008297 Male Males
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010898 Pitch Perception A dimension of auditory sensation varying with cycles per second of the sound stimulus. Perception, Pitch,Perceptions, Pitch,Pitch Perceptions
D011601 Psychophysics The science dealing with the correlation of the physical characteristics of a stimulus, e.g., frequency or intensity, with the response to the stimulus, in order to assess the psychologic factors involved in the relationship. Psychophysic
D012054 Reinforcement, Psychology The strengthening of a conditioned response. Negative Reinforcement,Positive Reinforcement,Psychological Reinforcement,Reinforcement (Psychology),Negative Reinforcements,Positive Reinforcements,Psychological Reinforcements,Psychology Reinforcement,Psychology Reinforcements,Reinforcement, Negative,Reinforcement, Positive,Reinforcement, Psychological,Reinforcements (Psychology),Reinforcements, Negative,Reinforcements, Positive,Reinforcements, Psychological,Reinforcements, Psychology
D002682 Chinchilla A genus of the family Chinchillidae which consists of three species: C. brevicaudata, C. lanigera, and C. villidera. They are used extensively in biomedical research. Chinchillas
D003216 Conditioning, Operant Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced. Instrumental Learning,Learning, Instrumental,Operant Conditioning,Conditionings, Operant,Instrumental Learnings,Learnings, Instrumental,Operant Conditionings
D004193 Discrimination Learning Learning that is manifested in the ability to respond differentially to various stimuli. Discriminative Learning,Discrimination Learnings,Discriminative Learnings,Learning, Discrimination,Learning, Discriminative
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory

Related Publications

T J Brozoski, and C A Bauer, and D M Caspary
May 2019, Neuroscience,
T J Brozoski, and C A Bauer, and D M Caspary
February 2016, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T J Brozoski, and C A Bauer, and D M Caspary
August 1987, Brain research,
T J Brozoski, and C A Bauer, and D M Caspary
September 1994, The Journal of the Acoustical Society of America,
T J Brozoski, and C A Bauer, and D M Caspary
December 2009, Neuroscience,
T J Brozoski, and C A Bauer, and D M Caspary
May 2022, BMC biology,
T J Brozoski, and C A Bauer, and D M Caspary
January 1999, American journal of otolaryngology,
T J Brozoski, and C A Bauer, and D M Caspary
November 2012, Brain research,
T J Brozoski, and C A Bauer, and D M Caspary
March 1994, Journal of neurophysiology,
T J Brozoski, and C A Bauer, and D M Caspary
May 2011, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!