Effects of antifolates on the binding of 5-fluoro-2'-deoxyuridine monophosphate to thymidylate synthase. 2002

Clasina L van der Wilt, and Kees Smid, and Godefridus J Peters
Department of Medical Oncology, VU University, Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.

Folate based inhibitors of thymidylate synthase (TS) might facilitate binding of 5-fluoro-2'-deoxyuridine-5'-monophosphate (FdUMP) to TS similar to the natural reduced folate 5,10-methylenetetrahydrofolate (CH(2)-H(4)-folate). We studied the lipophilic, non-polyglutamatable antifolates Nolatrexed (NTX) and AG331 and antifolates, that can have a polyglutamate side chain like the natural folate CH(2)-H(4)-folate; GW1843U89, Raltitrexed (RTX) and Multi-targetted antifolate (MTA) and pentaglutamates (RTX-Glu(5) and MTA-Glu(5)). The capacity of these compounds to facilitate the binding of [(3)H]FdUMP to Lactobacillus casei TS and an ammoniumsulphate precipitate of human TS was investigated. Only NTX, RTX-Glu(5) and MTA-Glu(5) facilitated FdUMP binding to L. casei TS and their dissociation constant K(d) (0.2-0.7 microM) was low compared to CH(2)-H(4)-folate (2.0 microM). The small lipophilic molecule NTX was favorable to the larger AG331. Polyglutamylation, as indicated by the difference in effect of RTX vs. RTX-Glu(5) and MTA vs. MTA-Glu(5), seems to be important for a classical antifolate to facilitate binding of FdUMP to bacterial TS. Effects of antifolates on FdUMP binding to human TS were different. At a low concentration (0.05 microM) NTX, RTX-Glu(5) and MTA-Glu(5) facilitated 3-5 times higher binding of [(3)H]FdUMP to TS than CH(2)-H(4)-folate. At higher concentrations (0.3-5 microM) of NTX, RTX-Glu(5) and MTA-Glu(5) the FdUMP binding decreased. The complex remained stable in the absence of (anti)folate for at least 24hr. The K(d) values of the antifolates for human TS varied from 19 to 387 nM, while the K(d) of CH(2)-H(4)-folate for human TS was 351 nM. The Hill coefficients, which indicated the type of cooperativity of the antifolates in the binding of FdUMP to TS were positive (0.58-0.99) at low concentrations (<0.3 microM) and negative (-0.35 to -0.81) at concentrations >0.3 microM except for GW1843U89, which only showed negative cooperativity (-1.70). It was shown with [(14)C]NTX that when the binding of FdUMP decreased at high NTX concentrations, the binding of NTX to TS still increased. This also held for the natural substrate dUMP. The negative cooperativity of the antifolates was clearly concentration dependent. The difference between human and L. casei TS in the FdUMP binding assays with antifolates can possibly be explained by interaction of the two subunits of human TS, which was absent in L. casei TS. The binding of antifolates to one of the two subunits induced a conformational change of the other subunit. This change no longer allowed the binding of FdUMP or dUMP at the active site. In conclusion this study showed that antifolates enhanced the binding of FdUMP to TS, especially at low antifolate concentrations, that are also clinically achievable, e.g. in human plasma.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007780 Lacticaseibacillus casei A rod-shaped bacterium isolated from milk and cheese, dairy products and dairy environments, sour dough, cow dung, silage, and human mouth, human intestinal contents and stools, and the human vagina. L. casei is CATALASE positive. Lactobacillus casei
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D005468 Fluorodeoxyuridylate 5-Fluoro-2'-deoxyuridylate. An inhibitor of thymidylate synthetase. Formed from 5-fluorouracil or 5-fluorodeoxyuridine. 5-Fluoro-2'-Deoxyuridine-5'-Monophosphate,FdUMP,5 Fluoro 2' Deoxyuridine 5' Monophosphate
D005493 Folic Acid Antagonists Inhibitors of the enzyme, dihydrofolate reductase (TETRAHYDROFOLATE DEHYDROGENASE), which converts dihydrofolate (FH2) to tetrahydrofolate (FH4). They are frequently used in cancer chemotherapy. (From AMA, Drug Evaluations Annual, 1994, p2033) Antifolate,Antifolates,Dihydrofolate Reductase Inhibitor,Folic Acid Antagonist,Dihydrofolate Reductase Inhibitors,Folic Acid Metabolism Inhibitors,Acid Antagonist, Folic,Acid Antagonists, Folic,Antagonist, Folic Acid,Antagonists, Folic Acid,Inhibitor, Dihydrofolate Reductase,Inhibitors, Dihydrofolate Reductase,Reductase Inhibitor, Dihydrofolate,Reductase Inhibitors, Dihydrofolate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D013940 Thymidylate Synthase An enzyme of the transferase class that catalyzes the reaction 5,10-methylenetetrahydrofolate and dUMP to dihydrofolate and dTMP in the synthesis of thymidine triphosphate. (From Dorland, 27th ed) EC 2.1.1.45. Thymidylate Synthetase,Synthase, Thymidylate,Synthetase, Thymidylate

Related Publications

Clasina L van der Wilt, and Kees Smid, and Godefridus J Peters
March 1993, Biochemical pharmacology,
Clasina L van der Wilt, and Kees Smid, and Godefridus J Peters
September 1995, European journal of biochemistry,
Clasina L van der Wilt, and Kees Smid, and Godefridus J Peters
May 2023, ACS pharmacology & translational science,
Clasina L van der Wilt, and Kees Smid, and Godefridus J Peters
December 1994, Biochemistry,
Clasina L van der Wilt, and Kees Smid, and Godefridus J Peters
February 1977, Archives of biochemistry and biophysics,
Clasina L van der Wilt, and Kees Smid, and Godefridus J Peters
May 1993, Molecular pharmacology,
Clasina L van der Wilt, and Kees Smid, and Godefridus J Peters
January 1989, Advances in enzyme regulation,
Clasina L van der Wilt, and Kees Smid, and Godefridus J Peters
July 1995, Molecular pharmacology,
Clasina L van der Wilt, and Kees Smid, and Godefridus J Peters
May 1988, Proceedings of the National Academy of Sciences of the United States of America,
Clasina L van der Wilt, and Kees Smid, and Godefridus J Peters
January 1990, Anticancer research,
Copied contents to your clipboard!