Structural analysis of 2',3'-dideoxyinosine, 2',3'-dideoxyadenosine, 2',3'-dideoxyguanosine and 2',3'-dideoxycytidine by 500-MHz 1H-NMR spectroscopy and ab-initio molecular orbital calculations. 1992

J Plavec, and L H Koole, and J Chattopadhyaya
Department of Bioorganic Chemistry, University of Uppasala, Sweden.

Solution structure of anti-AIDS drug, 2',3'-dideoxyinosine (ddI) has been assessed by NMR spectroscopy and pseudorotational analysis in conjunction with its analogues: 2',3'-dideoxyadenosine (ddA), 2',3'-dideoxyguanosine (ddG) and 2',3'-dideoxycytidine (ddC). The absence of 3'-hydroxyl groups in these compounds has prompted us to establish the relationship between proton-proton and corresponding endocyclic torsion angles in the 2',3'-dideoxyribofuranose moiety on the basis of five available crystal structures of 2',3'-dideoxynucleosides. A subsequent pseudorotational analysis on ddI (1), ddA (2), ddG (3) and ddC (4) shows that the twist C2'exo-C3'-endo forms of sugar are overwhelmingly preferred (75-80%) over the C2'-endo envelope forms. The phase angles (P) for North and South conformers with the corresponding puckering amplitude (psi m) for ddI (1), ddA (2) and ddG (3) are as follows: PN = 0.1 degrees, PS = 161 degrees and psi m = 34.1 degrees for ddI (1); PN = 1.4 degrees, PS = 160 degrees and psi m = 34.2 degrees for ddA (2) and PN = 2.4 degrees, PS = 163 degrees and psi m = 33.6 degrees for ddG (3). The predominant North conformer of ddC (4) is intermediate between twist C2'-exo-C3'-endo and C3'-endo envelope (P = 10.9 degrees) with a psi m of 34.7 degrees. Note that these preponderant North-sugar structures (approx. 75-80%) found in the solution studies of ddI (1), ddA (2), dG (3) and ddC (4) are not reflected in the X-ray crystal structures of 2',3'-dideoxyadenosine and 2',3'-dideoxycytidine. The constituent sugar residues in both of these crystal structures denosine and 2',3'-dideoxycytidine. The constituent sugar residues in both of these crystal structures are found to be in the South-type geometry (ddA crystalizes in C3'-exo envelope form, while ddC adopts the form intermediate between the C3'-exo envelope and C3'-endo-C4'-exo twist form). This means that X-ray structures of ddA (2) and ddC (4) only represent the minor conformer of the overall pseudorotamer population in solution. An assumption that the structure of the pentofuranose sugar (i.e. P and psi m) participating in conformational equilibrium described by the two-state model remains unchanged at different temperatures has been experimentally validated by assessing five unknown pseudorotational parameters with eight unique observables (3J1'2', 3J1'2", 3J2'3', 3J2'3", 3J2"3', 3J2"3", 3J3'4' and 3J3"4') for 2',3'-dideoxynucleosides.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D013057 Spectrum Analysis The measurement of the amplitude of the components of a complex waveform throughout the frequency range of the waveform. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Spectroscopy,Analysis, Spectrum,Spectrometry
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D015224 Dideoxynucleosides Nucleosides that have two hydroxy groups removed from the sugar moiety. The majority of these compounds have broad-spectrum antiretroviral activity due to their action as antimetabolites. The nucleosides are phosphorylated intracellularly to their 5'-triphosphates and act as chain-terminating inhibitors of viral reverse transcription. 2',3'-Dideoxynucleosides,Dideoxyribonucleosides,ddNus,2',3' Dideoxynucleosides
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D016047 Zalcitabine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by a hydrogen. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication at low concentrations, acting as a chain-terminator of viral DNA by binding to reverse transcriptase. Its principal toxic side effect is axonal degeneration resulting in peripheral neuropathy. 2',3'-Dideoxycytidine,Dideoxycytidine,ddC (Antiviral),HIVID Roche,Hivid,NSC-606170,2',3' Dideoxycytidine,NSC 606170,NSC606170
D016048 Dideoxyadenosine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by a hydrogen. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is an inhibitor of HIV replication, acting as a chain-terminator of viral DNA by binding to reverse transcriptase. Its principal side effect is nephrotoxicity. In vivo, dideoxyadenosine is rapidly metabolized to DIDANOSINE (ddI) by enzymatic deamination; ddI is then converted to dideoxyinosine monophosphate and ultimately to dideoxyadenosine triphosphate, the putative active metabolite. 2',3'-Dideoxyadenosine,ddA (Antiviral),2',3' Dideoxyadenosine

Related Publications

J Plavec, and L H Koole, and J Chattopadhyaya
September 1988, Journal of chromatography,
J Plavec, and L H Koole, and J Chattopadhyaya
April 1989, Analytical biochemistry,
J Plavec, and L H Koole, and J Chattopadhyaya
July 2009, The Journal of organic chemistry,
J Plavec, and L H Koole, and J Chattopadhyaya
July 1989, Investigational new drugs,
J Plavec, and L H Koole, and J Chattopadhyaya
October 2006, Magnetic resonance in chemistry : MRC,
J Plavec, and L H Koole, and J Chattopadhyaya
February 1988, Acta crystallographica. Section C, Crystal structure communications,
J Plavec, and L H Koole, and J Chattopadhyaya
January 2024, Inorganic chemistry,
Copied contents to your clipboard!