The rat angiotensin II AT1A receptor couples with three different signal transduction pathways. 1992

J Ohnishi, and M Ishido, and T Shibata, and T Inagami, and K Murakami, and H Miyazaki
Institute of Applied Biochemistry, University of Tsukuba, Ibaraki, Japan.

To examine whether the subpopulation of the rat type 1 angiotensin II (AII) receptor (AT1A) couples with a single or multiple signal transduction pathways, we constructed Chinese hamster ovary (CHO) cell lines producing the recombinant receptor. The expressed AT1A receptor exhibits typical pharmacological characteristics of the AT1 receptor, known to mediate the main physiological function of AII. Addition of AII to the CHO cells induced a rapid, transient increase in intracellular free Ca2+ concentrations ([Ca2+]i) followed by a lower, sustained phase. Nicardipine, a blocker of voltage-dependent L-type Ca2+ channels, attenuated the transient [Ca2+]i response and abolished the sustained phase. The transient phase was also reduced dose-dependently by the phospholipase C inhibitor neomycin. Furthermore, AII inhibited forskolin-evoked cAMP accumulation. These data suggest, although another subpopulation named AT1B is present, that the rat AT1A receptor can independently couple with all three signal transduction pathways known to be induced by AII: i.e., i) activation of phospholipase C resulting in InsP3 generation with a subsequent release of intracellularly stored Ca2+, ii) activation of dihydropyridine-sensitive voltage-dependent Ca2+ channels, and iii) inhibition of adenylate cyclase activity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009355 Neomycin Aminoglycoside antibiotic complex produced by Streptomyces fradiae. It is composed of neomycins A, B, and C, and acts by inhibiting translation during protein synthesis. Fradiomycin Sulfate,Neomycin Palmitate,Neomycin Sulfate
D009529 Nicardipine A potent calcium channel blockader with marked vasodilator action. It has antihypertensive properties and is effective in the treatment of angina and coronary spasms without showing cardiodepressant effects. It has also been used in the treatment of asthma and enhances the action of specific antineoplastic agents. Antagonil,Cardene,Cardene I.V.,Cardene SR,Dagan,Flusemide,Lecibral,Lincil,Loxen,Lucenfal,Nicardipine Hydrochloride,Nicardipine LA,Nicardipino Ratiopharm,Nicardipino Seid,Perdipine,Ridene,Vasonase,Y-93,Hydrochloride, Nicardipine,LA, Nicardipine,Y 93,Y93
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

J Ohnishi, and M Ishido, and T Shibata, and T Inagami, and K Murakami, and H Miyazaki
November 1998, Regulatory peptides,
J Ohnishi, and M Ishido, and T Shibata, and T Inagami, and K Murakami, and H Miyazaki
April 2002, Current hypertension reports,
J Ohnishi, and M Ishido, and T Shibata, and T Inagami, and K Murakami, and H Miyazaki
January 2001, Contributions to nephrology,
J Ohnishi, and M Ishido, and T Shibata, and T Inagami, and K Murakami, and H Miyazaki
January 1994, Trends in cardiovascular medicine,
J Ohnishi, and M Ishido, and T Shibata, and T Inagami, and K Murakami, and H Miyazaki
August 1995, The American journal of physiology,
J Ohnishi, and M Ishido, and T Shibata, and T Inagami, and K Murakami, and H Miyazaki
January 2000, Trends in endocrinology and metabolism: TEM,
J Ohnishi, and M Ishido, and T Shibata, and T Inagami, and K Murakami, and H Miyazaki
March 1993, Regulatory peptides,
J Ohnishi, and M Ishido, and T Shibata, and T Inagami, and K Murakami, and H Miyazaki
April 1997, Glia,
J Ohnishi, and M Ishido, and T Shibata, and T Inagami, and K Murakami, and H Miyazaki
January 1996, Clinical and experimental pharmacology & physiology. Supplement,
J Ohnishi, and M Ishido, and T Shibata, and T Inagami, and K Murakami, and H Miyazaki
September 1996, Clinical and experimental pharmacology & physiology,
Copied contents to your clipboard!