Regulation of fitness in yeast overexpressing glycolytic enzymes: parameters of growth and viability. 1992

R F Rosenzweig
Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia 19104.

Current models predict that large increases over wild-type in the activity of one enzyme will not alter an organism's fitness. This prediction is tested in Saccharomyces cerevisiae through the use of a high copy plasmid that bears one of the following: hexokinase B (HEXB), phosphoglucose isomerase (PGI), phosphofructokinase (PFKA and PFKB), or pyruvate kinase (PYK). Transformants containing these plasmids demonstrate a four to ten-fold increase in enzyme specific activity over either the parent strain or transformants containing the plasmid alone. Haploid and diploid transformants derived from independent backgrounds were grown on both fermentable and non-fermentable carbon sources and evaluated for several components of fitness. These include growth rate under non-limiting conditions, maximum stationary phase density, and viability in extended batch culture. Cell viability is not affected by overproduction of these enzymes. Growth rate and stationary phase density do not differ significantly among strains that overexpress HEXB, PGI or contain the vector alone. PFKA, B transformants show reduced growth rate on glucose in one background only. For these loci the current model is confirmed. By contrast, when grown on glucose, yeast overexpressing PYK demonstrate reduced growth rate and increased stationary phase density in both backgrounds. These effects are abolished in cells containing plasmids with a Tn5 disrupted copy of the PYK gene. Our results are consistent with reports that the PYK locus may exert control over the yeast cell cycle and suggest that it will be challenging to model relations between fitness and activity for multifunctional proteins.

UI MeSH Term Description Entries
D012098 Reproduction The total process by which organisms produce offspring. (Stedman, 25th ed) Human Reproductive Index,Human Reproductive Indexes,Reproductive Period,Human Reproductive Indices,Index, Human Reproductive,Indexes, Human Reproductive,Indices, Human Reproductive,Period, Reproductive,Periods, Reproductive,Reproductive Index, Human,Reproductive Indices, Human,Reproductive Periods
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

R F Rosenzweig
January 1989, Yeast (Chichester, England),
R F Rosenzweig
January 1988, Archives of microbiology,
R F Rosenzweig
January 1970, Enzymologia biologica et clinica,
R F Rosenzweig
September 1969, Biochimica et biophysica acta,
R F Rosenzweig
January 1979, Methods in enzymology,
R F Rosenzweig
June 1972, Journal of cellular physiology,
R F Rosenzweig
September 2022, Trends in cell biology,
R F Rosenzweig
April 1966, Archives of biochemistry and biophysics,
Copied contents to your clipboard!