Gonadotropin-induced expression of receptors for growth hormone releasing factor in cultured granulosa cells. 1991

A Bagnato, and C Moretti, and G Frajese, and K J Catt
Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.

The hypothalamic neuropeptide, GRF, is formed in the ovary and acts via specific receptors in granulosa cells to enhance cAMP production and steroidogenic responses to the pituitary gonadotropin, FSH. Granulosa cells cultured without hormonal treatment displayed low levels of binding sites for GRF and the related neuropeptide, vasoactive intestinal peptide. However, treatment with increasing concentrations (50-500 ng/ml) of FSH caused dose-dependent increases in cAMP production and expression of binding sites measured with radioiodinated [His1, Nle27]human GRF(1-32)NH2, with no change in binding affinity. The maximum increase in GRF binding sites (2.2-fold) was elicited by 250 ng/ml FSH after 72 h incubation. GRF binding sites were also increased by agents that elevate intracellular cAMP, including choleragen, vasoactive intestinal peptide, dibutyryl cAMP, and forskolin. Low doses of forskolin that did not alone increase [125I] [His1, Nle27] human GRF(1-32)NH2 binding potentiated the action of FSH on GRF binding sites, but the effects of maximal stimulatory doses of both agents were not additive. These findings demonstrate that FSH promotes the expression of GRF receptors in maturing granulosa cells through cAMP-dependent mechanisms. Since GRF enhances the actions of FSH on cAMP production and granulosa cell differentiation, and GRF receptors are increased by the cAMP-mediated actions of FSH, locally produced GRF could exert a positive autoregulatory action to accelerate follicular maturation by amplifying the granulosa cell response to FSH.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone

Related Publications

A Bagnato, and C Moretti, and G Frajese, and K J Catt
April 2001, Yonsei medical journal,
A Bagnato, and C Moretti, and G Frajese, and K J Catt
November 1982, Endocrinology,
A Bagnato, and C Moretti, and G Frajese, and K J Catt
October 1988, Biochemical and biophysical research communications,
A Bagnato, and C Moretti, and G Frajese, and K J Catt
January 1981, The Journal of biological chemistry,
A Bagnato, and C Moretti, and G Frajese, and K J Catt
October 1980, Endocrinology,
A Bagnato, and C Moretti, and G Frajese, and K J Catt
February 1982, Science (New York, N.Y.),
A Bagnato, and C Moretti, and G Frajese, and K J Catt
December 1990, Biology of reproduction,
A Bagnato, and C Moretti, and G Frajese, and K J Catt
March 1981, The Journal of biological chemistry,
A Bagnato, and C Moretti, and G Frajese, and K J Catt
September 1999, Cell and tissue research,
A Bagnato, and C Moretti, and G Frajese, and K J Catt
May 1986, Endocrinology,
Copied contents to your clipboard!