Nitric oxide modulation of voltage-gated calcium current by S-nitrosylation and cGMP pathway in cultured rat hippocampal neurons. 2007

Kuihuan Jian, and Ming Chen, and Xiong Cao, and Xin-Hong Zhu, and Man-Lung Fung, and Tian-Ming Gao
Department of Anatomy and Neurobiology, Southern Medical University, Guangzhou 510515, China.

Nitric oxide (NO) plays an important role in many physiological and pathophysiological processes in the brain. In this study, we examined the mechanistic effects of an NO donor, diethylenetriamine/nitric oxide adduct (DETA/NO) on the voltage-gated calcium currents in cultured rat hippocampal neurons. DETA/NO stimulated the calcium currents and slightly increased the channel sensitivity to depolarizing voltages. The effect of DETA/NO on the calcium current was blocked by either depleting the NO in DETA/NO or by pretreating the neurons with NEM, a thiol-specific alkylating agent, suggesting an involvement of S-nitrosylation in the current response to NO. In addition, activation of the cGMP pathway by 8-Br-cGMP inhibited the calcium current in the neurons. Also, inhibition of guanylyl cyclase by 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ) increased the current response to DETA/NO. Taken together, our results demonstrate that both S-nitrosylation and cGMP pathway are involved in the NO modulation of the hippocampal calcium current.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings

Related Publications

Kuihuan Jian, and Ming Chen, and Xiong Cao, and Xin-Hong Zhu, and Man-Lung Fung, and Tian-Ming Gao
August 2003, Acta pharmacologica Sinica,
Kuihuan Jian, and Ming Chen, and Xiong Cao, and Xin-Hong Zhu, and Man-Lung Fung, and Tian-Ming Gao
March 2004, Acta pharmacologica Sinica,
Kuihuan Jian, and Ming Chen, and Xiong Cao, and Xin-Hong Zhu, and Man-Lung Fung, and Tian-Ming Gao
August 1989, Brain research,
Kuihuan Jian, and Ming Chen, and Xiong Cao, and Xin-Hong Zhu, and Man-Lung Fung, and Tian-Ming Gao
February 2007, Journal of neurophysiology,
Kuihuan Jian, and Ming Chen, and Xiong Cao, and Xin-Hong Zhu, and Man-Lung Fung, and Tian-Ming Gao
June 2003, The European journal of neuroscience,
Kuihuan Jian, and Ming Chen, and Xiong Cao, and Xin-Hong Zhu, and Man-Lung Fung, and Tian-Ming Gao
November 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Kuihuan Jian, and Ming Chen, and Xiong Cao, and Xin-Hong Zhu, and Man-Lung Fung, and Tian-Ming Gao
June 2009, Journal of neurochemistry,
Kuihuan Jian, and Ming Chen, and Xiong Cao, and Xin-Hong Zhu, and Man-Lung Fung, and Tian-Ming Gao
December 2012, Sheng li xue bao : [Acta physiologica Sinica],
Kuihuan Jian, and Ming Chen, and Xiong Cao, and Xin-Hong Zhu, and Man-Lung Fung, and Tian-Ming Gao
January 1992, Ion channels,
Kuihuan Jian, and Ming Chen, and Xiong Cao, and Xin-Hong Zhu, and Man-Lung Fung, and Tian-Ming Gao
August 1995, Neuroscience letters,
Copied contents to your clipboard!