The maxi-chloride channel in human syncytiotrophoblast: a pathway for taurine efflux in placental volume regulation? 2007

C Vallejos, and G Riquelme
Laboratorio de Electrofisiología de Membranas, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Casilla 70005, Santiago 7, Chile.

Taurine (Tau), the most abundant amino acid in fetal blood, is highly concentrated in human placenta. During pregnancy, Tau is involved in the neurological development of the fetus, and in volume regulation of the placenta. The placenta may release taurine in parallel with K(+) and Cl(-) in response to an increase in cell volume. However, the pathway for the volume-activated taurine efflux is unknown. One candidate is a voltage-dependent Maxi-chloride channel from apical syncytiotrophoblast membrane (MVM), with a conductance over 200pS and multiple subconductance states. Our aim was to study whether this channel could be a Tau conductive pathway in the MVM. Purified human placental MVM were reconstituted into giant liposomes suitable for patch clamp recordings. Typical Maxi-chloride channel activity was detected in symmetrical chloride (Cl(-)) solutions, and then taurine (Tau), Aspartate (Asp), and glutamate (Glu) solutions were used in the bath of excised patches to detect single channel currents carried by these anions. The relative permeabilities (P), estimated from the shift in reversal potential of current-voltage curves after anion replacement, were as follows: Chloride>Taurine=Glutamate=Aspartate. In Tau symmetric conditions using equivalent Cl(-) concentrations, the slope conductance was 62.4+/-7.3pS. The data shows that Tau and other amino acids diffuse through the Maxi-chloride channel, which could be of great importance as part of the mechanism involved in the volume regulation process in human placenta.

UI MeSH Term Description Entries
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D010929 Placentation The development of the PLACENTA, a highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products between mother and FETUS. The process begins at FERTILIZATION, through the development of CYTOTROPHOBLASTS and SYNCYTIOTROPHOBLASTS, the formation of CHORIONIC VILLI, to the progressive increase in BLOOD VESSELS to support the growing fetus. Hemochorial Placental Development,Hemochorial Placentation,Placental Development,Placental Development, Hemochorial,Placentation, Hemochorial
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid

Related Publications

C Vallejos, and G Riquelme
January 2003, Advances in experimental medicine and biology,
C Vallejos, and G Riquelme
January 1998, Advances in experimental medicine and biology,
C Vallejos, and G Riquelme
September 1999, The American journal of physiology,
C Vallejos, and G Riquelme
November 1996, The Journal of allergy and clinical immunology,
C Vallejos, and G Riquelme
January 2003, The Journal of membrane biology,
C Vallejos, and G Riquelme
January 2000, Advances in experimental medicine and biology,
C Vallejos, and G Riquelme
November 2008, Biochimica et biophysica acta,
C Vallejos, and G Riquelme
January 1998, Advances in experimental medicine and biology,
Copied contents to your clipboard!