Modification and regeneration of synaptic connections in cultured leech ganglia. 1976

S Miyazaki, and J G Nicholls, and B G Wallace

Segmental ganglia of the central nervous system of the leech were maintained in culture medium outside the animal for several weeks in order to study the properties of synapses and regeneration by identified sensory and motor nerve cells. A variety of preparations were used, including single ganglia, chains of ganglia and ganglia connected to the areas of skin and muscle that they normally innervate in the animal. (1) For up to 10 weeks after removal from the animal, resting and action potentials recorded from sensory and motor neurons resembled those seen in normal ganglia. The same individual cell in a cultured ganglion could be recorded from with intracellular electrodes on a second occasion after an interval of a few days. (2) Sensory cells, identified as touch, pressure or nociceptive according to their morphology and electrical properties, continued to respond selectively to stimuli of the appropriate modality applied to their receptive fields in the skin; action potentials in motor cells caused contractions in the appropriate muscles. Culture of ganglia for more than 3 weeks caused the disappearance of synaptic potentials and a loss of transparency in ganglia. (3) Certain chemically mediated synaptic interactions between sensory and motor nerve cells became markedly changed in cultured ganglia. These changes appeared over the first 3 weeks and consisted of abnormally large excitatory and inhibitory synaptic potentials. The changes in synaptic transmission observed in culture were in many respects similar to those occurring in ganglia maintained within an animal after lesions have been made in the nervous system (Jansen et al. 1974). (4) The morphological appearances of sensory cells were compared in cultured and normal ganglia after injection of horseradish peroxidase. In cultured ganglia, the branching pattern appeared normal, but varicosities became more conspicuous. (5) When connectives linking cultured ganglia were crushed or cut, regeneration occurred. By 7 days, impulses propagated through the regenerated fibers and evoked synaptic potentials on cells within the next ganglion. The course taken by regenerating axons was observed in cells injected with horseradish peroxidase. The results again resembled those seen in animals with similar lesions. (6) The cultured ganglia provide preparations in which it is possible to analyze the mechanisms that underlie long-term changes similar to those seen in the leech central nervous system in situ.

UI MeSH Term Description Entries
D007865 Leeches Annelids of the class Hirudinea. Some species, the bloodsuckers, may become temporarily parasitic upon animals, including man. Medicinal leeches (HIRUDO MEDICINALIS) have been used therapeutically for drawing blood since ancient times. Hirudinea,Hirudineas,Leeche
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009409 Nerve Crush Treatment of muscles and nerves under pressure as a result of crush injuries. Crush, Nerve
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures

Related Publications

S Miyazaki, and J G Nicholls, and B G Wallace
December 1977, Proceedings of the Royal Society of London. Series B, Biological sciences,
S Miyazaki, and J G Nicholls, and B G Wallace
March 2005, Cellular and molecular neurobiology,
S Miyazaki, and J G Nicholls, and B G Wallace
January 1989, Science in China. Series B, Chemistry, life sciences & earth sciences,
S Miyazaki, and J G Nicholls, and B G Wallace
September 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Miyazaki, and J G Nicholls, and B G Wallace
March 1972, Proceedings of the National Academy of Sciences of the United States of America,
S Miyazaki, and J G Nicholls, and B G Wallace
October 1978, Physiological reviews,
S Miyazaki, and J G Nicholls, and B G Wallace
January 1979, Journal of neurobiology,
S Miyazaki, and J G Nicholls, and B G Wallace
January 1985, Acta Academiae Medicinae Wuhan = Wu-han i hsueh yuan hsueh pao,
S Miyazaki, and J G Nicholls, and B G Wallace
March 1968, Arkhiv anatomii, gistologii i embriologii,
S Miyazaki, and J G Nicholls, and B G Wallace
January 1988, Comparative biochemistry and physiology. A, Comparative physiology,
Copied contents to your clipboard!