Astrocytes affect the profile of purines released from cultured cortical neurons. 2008

Christina R Zamzow, and Wei Xiong, and Fiona E Parkinson
Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada.

Adenosine (ADO) is produced by cultured neurons and astrocytes, albeit by different pathways, during in vitro stroke models (Parkinson and Xiong [2004] J. Neurochem. 88:1305-1312). Expression of ecto-5' nucleotidase (e-N), the enzyme responsible for extracellular dephosphorylation of AMP to ADO, is more abundant in astrocytes than neurons. Therefore, we tested the hypothesis that N-methyl-D-aspartate (NMDA) evokes ADO release per se from neurons, whereas dephosphorylation of extracellular adenine nucleotides contributes to NMDA-evoked ADO production in the presence of astrocytes. We used four different cell preparations-cortical rat neurons, cortical rat astrocytes, cocultures of neurons and astrocytes, and transient cocultures of neurons with astrocytes on transwell filters-to show that astrocytes contribute to NMDA-evoked increases in extracellular ADO. NMDA significantly increased ADO and inosine (INO) production from cultured cortical neurons but only increased extracellular INO production from cocultures. In neurons, the equilibrative nucleoside transport (ENT) inhibitor dipyridamole (DPR) prevented NMDA-evoked ADO and INO production, whereas the e-N inhibitor alpha,beta-methylene ADP (AOPCP) had no effect. Conversely, from both cocultures and transient cocultures DPR significantly decreased NMDA-evoked INO but not ADO generation. AOPCP inhibited NMDA-evoked production of both ADO and INO from transient cocultures. In the absence of astrocytes, NMDA evoked release of intracellular ADO and INO from cultured cortical neurons through ENT. However, in the presence of astrocytes, extracellular conversion of adenine nucleotides to ADO contributed significantly to NMDA-evoked production of this purine.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011687 Purines A series of heterocyclic compounds that are variously substituted in nature and are known also as purine bases. They include ADENINE and GUANINE, constituents of nucleic acids, as well as many alkaloids such as CAFFEINE and THEOPHYLLINE. Uric acid is the metabolic end product of purine metabolism.
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016202 N-Methylaspartate An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA). N-Methyl-D-aspartate,NMDA,N-Methyl-D-aspartic Acid,Acid, N-Methyl-D-aspartic,N Methyl D aspartate,N Methyl D aspartic Acid,N Methylaspartate
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Christina R Zamzow, and Wei Xiong, and Fiona E Parkinson
September 1998, Brain research. Molecular brain research,
Christina R Zamzow, and Wei Xiong, and Fiona E Parkinson
January 1991, Brain research. Molecular brain research,
Christina R Zamzow, and Wei Xiong, and Fiona E Parkinson
March 2004, Journal of neurochemistry,
Christina R Zamzow, and Wei Xiong, and Fiona E Parkinson
January 2014, Frontiers in neural circuits,
Christina R Zamzow, and Wei Xiong, and Fiona E Parkinson
May 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Christina R Zamzow, and Wei Xiong, and Fiona E Parkinson
October 1987, Brain research,
Christina R Zamzow, and Wei Xiong, and Fiona E Parkinson
January 1988, Glia,
Christina R Zamzow, and Wei Xiong, and Fiona E Parkinson
August 1998, Journal of neurochemistry,
Christina R Zamzow, and Wei Xiong, and Fiona E Parkinson
August 1993, Brain research,
Christina R Zamzow, and Wei Xiong, and Fiona E Parkinson
December 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!