Expression of neurotrophic activity in Xenopus oocytes injected with mRNA from wounded rat cerebral cortex. 1990

A M Duchemin, and T T Quach, and B K Schrier, and D M Chuang, and R J Wyatt
Neuropsychiatry Branch, NIMH Neurosciences Center, Saint Elizabeths, Washington, DC 20032.

Injury to the cerebral cortex of the rat brain has been shown to induce the expression of neurotrophic factors for dissociated peripheral and central neurons in culture. We confirm this phenomenon and report that Xenopus laevis oocytes injected with mRNA extracted from wounded rat cortex expressed similar neurotrophic activity. To detect the low amounts of neurotrophic factors that could be expected from the oocyte translation system, a miniaturization of the assay for neurotrophic and cell-surviving activity was developed using Terasaki microtiter plates for culture of chicken embryo sympathetic ganglion cells. Messenger RNA (mRNA) was size-fractionated on a sucrose gradient and RNAs from each fraction were injected into oocytes. Neurotrophic activity was recovered from the homogenates and from the incubation media of oocytes injected with mRNA from 7 day post-lesion cortex. Messenger RNAs in the active fractions ranged in size from 0.8 to 1.8 kb. As much as 20% of the activity was secreted by the oocytes. No significant neurotrophic activity was detected from oocytes injected with mRNA fractions extracted from the cortex of control rats or from other gradient fractions from post-lesion cortex.

UI MeSH Term Description Entries
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005260 Female Females
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion

Related Publications

A M Duchemin, and T T Quach, and B K Schrier, and D M Chuang, and R J Wyatt
June 1993, The Journal of general physiology,
A M Duchemin, and T T Quach, and B K Schrier, and D M Chuang, and R J Wyatt
December 1989, FEBS letters,
A M Duchemin, and T T Quach, and B K Schrier, and D M Chuang, and R J Wyatt
September 1996, Japanese journal of pharmacology,
A M Duchemin, and T T Quach, and B K Schrier, and D M Chuang, and R J Wyatt
September 1987, Brain research,
A M Duchemin, and T T Quach, and B K Schrier, and D M Chuang, and R J Wyatt
January 1984, Nature,
A M Duchemin, and T T Quach, and B K Schrier, and D M Chuang, and R J Wyatt
March 1994, Brain research. Molecular brain research,
A M Duchemin, and T T Quach, and B K Schrier, and D M Chuang, and R J Wyatt
July 1995, Brain research. Developmental brain research,
A M Duchemin, and T T Quach, and B K Schrier, and D M Chuang, and R J Wyatt
May 1992, Biochemical and biophysical research communications,
A M Duchemin, and T T Quach, and B K Schrier, and D M Chuang, and R J Wyatt
June 2000, Cellular and molecular neurobiology,
A M Duchemin, and T T Quach, and B K Schrier, and D M Chuang, and R J Wyatt
October 1990, The Journal of physiology,
Copied contents to your clipboard!