Merocyanine 540-sensitized photoinactivation of soluble and membrane-bound enzymes in L1210 leukemia cells. 1990

D K Gaffney, and F Sieber
Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226.

Merocyanine 540 (MC 540) is a photosensitizing dye that is used clinically for the purging of autologous bone marrow grafts and preclinically for the inactivation of enveloped viruses in blood products. Its mechanism of action is not yet well understood. This paper investigates the sites of MC 540-mediated photodamages in L1210 leukemia cells by examining the effects of MC 540-sensitized photoirradiation on several soluble and membrane-bound marker enzymes. When exposed to MC 540 and white light under a standard set of conditions, the activities of Na+/K(+)-ATPase, Mg2(+)-ATPase, and 5'-nucleotidase (three plasma membrane-bound enzymes) were reduced by 54, 49, and 55%, respectively. None of the intracellular enzymes included in this survey was affected by MC 540-sensitized photoirradiation as long as the plasma membrane remained intact. The two soluble enzymes, lactate dehydrogenase and malate dehydrogenase, remained refractory to MC 540-sensitized photoirradiation even after the plasma membrane had been disrupted. By contrast, the activities of the membrane-bound enzymes, NADPH-cytochrome c reductase and succinate dehydrogenase, were reduced in cell lysates by 55 and 81%, respectively. Purified NADPH-cytochrome c reductase was about 3 times less sensitive than the microsomal enzyme, suggesting that the membrane environment facilitated photoinactivation. The MC 540-sensitized photoinactivation of enzymes was accelerated in the presence of deuterium oxide and inhibited if oxygen in the medium was displaced by nitrogen or azide was added to the medium. Taken together, these data support the view that the plasma membrane is a major target of MC 540-mediated photodamages, that the inactivation of membrane-bound enzymes is an oxidative process, and that at least some photodynamic damages are mediated by type II chemistry.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007939 Leukemia L1210 An experimental LYMPHOCYTIC LEUKEMIA of mice. Leukemia L 1210,L 1210, Leukemia,L1210, Leukemia
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011744 Pyrimidinones Heterocyclic compounds known as 2-pyrimidones (or 2-hydroxypyrimidines) and 4-pyrimidones (or 4-hydroxypyrimidines) with the general formula C4H4N2O. Pyrimidinone,Pyrimidone,Pyrimidones
D011838 Radiation-Sensitizing Agents Drugs used to potentiate the effectiveness of radiation therapy in destroying unwanted cells. Radiation Sensitizer,Radiosensitizing Agent,Radiosensitizing Agents,Agents, Radiation-Sensitizing,Radiation Sensitizers,Radiation Sensitizing Agents,Radiation-Sensitizing Drugs,Radiation-Sensitizing Effect,Radiation-Sensitizing Effects,Radiosensitizing Drugs,Radiosensitizing Effect,Radiosensitizing Effects,Agent, Radiosensitizing,Agents, Radiation Sensitizing,Agents, Radiosensitizing,Drugs, Radiation-Sensitizing,Drugs, Radiosensitizing,Effect, Radiation-Sensitizing,Effect, Radiosensitizing,Effects, Radiation-Sensitizing,Effects, Radiosensitizing,Radiation Sensitizing Drugs,Radiation Sensitizing Effect,Radiation Sensitizing Effects,Sensitizer, Radiation,Sensitizers, Radiation,Sensitizing Agents, Radiation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response

Related Publications

D K Gaffney, and F Sieber
August 1992, Photochemistry and photobiology,
D K Gaffney, and F Sieber
October 1992, Photochemistry and photobiology,
D K Gaffney, and F Sieber
January 1985, Cell biology international reports,
D K Gaffney, and F Sieber
January 1985, Progress in clinical and biological research,
Copied contents to your clipboard!