Pretargeted radioimmunotherapy with α-particle emitting radionuclides. 2011

Sture Lindegren, and Sofia H L Frost
Department of Radiation Physics, Institute of Clinical Sciences, the Sahlgrenska Academy at the University of Gothenburg, Sweden. sture.lindegren@radfys.gu.se

Alpha-particle emitting radionuclides are attractive for targeted cancer therapies due to their physicochemical properties. Their high linear energy transfer (LET) and short particle range makes them particularly toxic at a microscopic level, which is ideal for treating disseminated micrometastases. However, their cytotoxic properties also place special demands on the pharmacokinetics of the tumor specific carrier vector, where high tumor-to-normal-tissue ratios are a prerequisite. Tumor specific antibodies are perhaps the most common vector for targeted therapy, but due to pharmacokinetics considerations antibodies will generally not meet the standard for α-particle radioimmunotherapy. However, the tumor specificity of monoclonal antibodies may be used in pretargeting techniques, strategies used to increase the selectivity of the radioactivity. The basic concept of pretargeting relies on a separate administration of a modified antibody and a radioactive ligand. The modified antibody is first injected and allowed to localize on the tumor. Then, the radiolabeled ligand is injected, which is a small molecule that rapidly localizes the modified antibody on tumor cells while non-localized ligand rapidly clears from the circulation, preferably through renal filtration. Several pretargeting strategies have been developed, in particular the avidin-biotin system and bispecific antibodies. Approaches under evaluation are the use of complementary DNA, morpholinos, and the use of infinite antigen binding. Preclinical and clinical studies of pretargeting have shown that favorable distribution of the radioactivity can be achieved, which may increase dose to the tumor as compared with the dose from directly labeled antibodies, and most important decrease the dose to normal tissues. This survey describes different pretargeting strategies, and includes a review of pretargeting with α emitting radionuclides.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011868 Radioisotopes Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Daughter Isotope,Daughter Nuclide,Radioactive Isotope,Radioactive Isotopes,Radiogenic Isotope,Radioisotope,Radionuclide,Radionuclides,Daughter Nuclides,Daugter Isotopes,Radiogenic Isotopes,Isotope, Daughter,Isotope, Radioactive,Isotope, Radiogenic,Isotopes, Daugter,Isotopes, Radioactive,Isotopes, Radiogenic,Nuclide, Daughter,Nuclides, Daughter
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000512 Alpha Particles Positively charged particles composed of two protons and two NEUTRONS, i.e. equivalent to HELIUM nuclei, which are emitted during disintegration of heavy ISOTOPES. Alpha rays have very strong ionizing power, but weak penetrability. Alpha Rays,Alpha Radiation,Radiation, Alpha,Alpha Particle,Alpha Ray,Particle, Alpha,Particles, Alpha,Ray, Alpha,Rays, Alpha
D016499 Radioimmunotherapy Radiotherapy where cytotoxic radionuclides are linked to antibodies in order to deliver toxins directly to tumor targets. Therapy with targeted radiation rather than antibody-targeted toxins (IMMUNOTOXINS) has the advantage that adjacent tumor cells, which lack the appropriate antigenic determinants, can be destroyed by radiation cross-fire. Radioimmunotherapy is sometimes called targeted radiotherapy, but this latter term can also refer to radionuclides linked to non-immune molecules (see RADIOTHERAPY). Immunoradiotherapy,Immunoradiotherapies,Radioimmunotherapies
D019275 Radiopharmaceuticals Compounds that are used in medicine as sources of radiation for radiotherapy and for diagnostic purposes. They have numerous uses in research and industry. (Martindale, The Extra Pharmacopoeia, 30th ed, p1161) Radiopharmaceutical

Related Publications

Sture Lindegren, and Sofia H L Frost
January 2014, Immunotherapy,
Sture Lindegren, and Sofia H L Frost
December 2004, The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of...,
Sture Lindegren, and Sofia H L Frost
June 2017, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
Sture Lindegren, and Sofia H L Frost
May 1988, Science (New York, N.Y.),
Sture Lindegren, and Sofia H L Frost
January 1996, Acta oncologica (Stockholm, Sweden),
Sture Lindegren, and Sofia H L Frost
November 2021, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
Sture Lindegren, and Sofia H L Frost
January 2005, Ernst Schering Research Foundation workshop,
Sture Lindegren, and Sofia H L Frost
January 2006, International journal of radiation oncology, biology, physics,
Sture Lindegren, and Sofia H L Frost
January 1986, Proceedings of the National Academy of Sciences of the United States of America,
Sture Lindegren, and Sofia H L Frost
April 2001, Cancer biotherapy & radiopharmaceuticals,
Copied contents to your clipboard!