Cell cycle-regulated gene expression in transgenic plant cells. 1990

T Kawata, and T Nakayama, and N Ohtsubo, and T Tabata, and M Iwabuchi
Division of Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, Japan.

A majority of histone genes are expressed in the S phase during the cell cycle. Using the gene expression system of transformed sunflower cells into which wheat histone H3 gene was introduced by the Ti-plasmid gene transfer technique, we determined three cis-acting control sequences (hexameric, octameric, and nonameric motifs) which seemed to confer the S-phase-specific transcription of wheat histone genes. Furthermore, as candidates for regulatory transcription factors, three nuclear DNA-binding proteins HBP-1a, HBP-1b, and HBP-2 that interact with the hexameric and nonameric motifs were identified. The structural analysis of the cDNA of HBP-1a revealed that a nuclear protein has the leucine-zipper structure and a DNA-binding motif. The hexameric motif in the H3 gene was also seen in cauliflower mosaic virus 35S (CaMV 35S) promoter and shown to function as a regulatory element of this promoter. The wheat HBP-1b can interact with the hexameric motif of the CaMV 35S promoter. Much attention has been paid to the significance of the hexameric sequences within the H3 and CaMV 35S promoters and the DNA-binding proteins HBP-1a and HBP-1b.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014908 Triticum A plant genus of the family POACEAE that is the source of EDIBLE GRAIN. A hybrid with rye (SECALE CEREALE) is called TRITICALE. The seed is ground into FLOUR and used to make BREAD, and is the source of WHEAT GERM AGGLUTININS. Wheat,Durum Wheat,Triticum aestivum,Triticum durum,Triticum spelta,Triticum turgidum,Triticum turgidum subsp. durum,Triticum vulgare,Durum Wheats,Wheat, Durum

Related Publications

T Kawata, and T Nakayama, and N Ohtsubo, and T Tabata, and M Iwabuchi
November 2002, The Journal of biological chemistry,
T Kawata, and T Nakayama, and N Ohtsubo, and T Tabata, and M Iwabuchi
January 2011, Advances in genetics,
T Kawata, and T Nakayama, and N Ohtsubo, and T Tabata, and M Iwabuchi
March 1992, Trends in genetics : TIG,
T Kawata, and T Nakayama, and N Ohtsubo, and T Tabata, and M Iwabuchi
October 2007, Proceedings of the National Academy of Sciences of the United States of America,
T Kawata, and T Nakayama, and N Ohtsubo, and T Tabata, and M Iwabuchi
February 2004, Genomics, proteomics & bioinformatics,
T Kawata, and T Nakayama, and N Ohtsubo, and T Tabata, and M Iwabuchi
April 2010, Developmental cell,
T Kawata, and T Nakayama, and N Ohtsubo, and T Tabata, and M Iwabuchi
August 1996, The American journal of pathology,
T Kawata, and T Nakayama, and N Ohtsubo, and T Tabata, and M Iwabuchi
January 2010, Methods in molecular biology (Clifton, N.J.),
T Kawata, and T Nakayama, and N Ohtsubo, and T Tabata, and M Iwabuchi
July 2001, Trends in genetics : TIG,
T Kawata, and T Nakayama, and N Ohtsubo, and T Tabata, and M Iwabuchi
June 2017, Journal of visualized experiments : JoVE,
Copied contents to your clipboard!