A Cytochrome P450-Independent Mechanism of Acetaminophen-Induced Injury in Cultured Mouse Hepatocytes. 2015

Kazuhisa Miyakawa, and Ryan Albee, and Lynda G Letzig, and Andreas F Lehner, and Michael A Scott, and John P Buchweitz, and Laura P James, and Patricia E Ganey, and Robert A Roth
Department of Pathobiology and Diagnostic Investigation (K.M., M.A.S., J.P.B.), Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (R.A., P.E.G., R.A.R.), and Diagnostic Center for Population and Animal Health, Section of Toxicology (A.F.L.), Michigan State University, East Lansing, Michigan; and Department of Pediatrics, University of Arkansas for Medical Sciences and Clinical Pharmacology and Toxicology Section, Arkansas Children's Hospital, Little Rock, Arkansas (L.G.L., L.P.J.).

Mouse hepatic parenchymal cells (HPCs) have become the most frequently used in vitro model to study mechanisms of acetaminophen (APAP)-induced hepatotoxicity. It is universally accepted that APAP hepatocellular injury requires bioactivation by cytochromes P450 (P450s), but this remains unproven in primary mouse HPCs in vitro, especially over the wide range of concentrations that have been employed in published reports. The aim of this work was to test the hypothesis that APAP-induced hepatocellular death in vitro depends solely on P450s. We evaluated APAP cytotoxicity and APAP-protein adducts (a biomarker of metabolic bioactivation by P450) using primary mouse HPCs in the presence and absence of a broad-spectrum inhibitor of P450s, 1-aminobenzotriazole (1-ABT). 1-ABT abolished formation of APAP-protein adducts at all concentrations of APAP (0-14 mM), but eliminated cytotoxicity only at small concentrations (≦5 mM), indicating the presence of a P450-independent mechanism at larger APAP concentrations. P450-independent cell death was delayed in onset relative to toxicity observed at smaller concentrations. p-Aminophenol was detected in primary mouse HPCs exposed to large concentrations of APAP, and a deacetylase inhibitor [bis (4-nitrophenyl) phosphate (BNPP)] significantly reduced cytotoxicity. In conclusion, APAP hepatocellular injury in vitro occurs by at least two mechanisms, a P450-dependent mechanism that operates at concentrations of APAP ≦ 5 mM and a P450-independent mechanism that predominates at larger concentrations and is slower in onset. p-Aminophenol most likely contributes to the latter mechanism. These findings should be considered in interpreting results from APAP cytotoxicity studies in vitro and in selecting APAP concentrations for use in such studies.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000082 Acetaminophen Analgesic antipyretic derivative of acetanilide. It has weak anti-inflammatory properties and is used as a common analgesic, but may cause liver, blood cell, and kidney damage. Acetamidophenol,Hydroxyacetanilide,Paracetamol,APAP,Acamol,Acephen,Acetaco,Acetominophen,Algotropyl,Anacin-3,Datril,N-(4-Hydroxyphenyl)acetanilide,N-Acetyl-p-aminophenol,Panadol,Tylenol,p-Acetamidophenol,p-Hydroxyacetanilide,Anacin 3,Anacin3
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018712 Analgesics, Non-Narcotic A subclass of analgesic agents that typically do not bind to OPIOID RECEPTORS and are not addictive. Many non-narcotic analgesics are offered as NONPRESCRIPTION DRUGS. Non Opioid Analgesic,Non-Opioid Analgesic,Nonopioid Analgesic,Nonopioid Analgesics,Analgesics, Nonnarcotic,Analgesics, Nonopioid,Non-Opioid Analgesics,Analgesic, Non Opioid,Analgesic, Non-Opioid,Analgesic, Nonopioid,Analgesics, Non Narcotic,Analgesics, Non-Opioid,Non Opioid Analgesics,Non-Narcotic Analgesics,Nonnarcotic Analgesics,Opioid Analgesic, Non

Related Publications

Kazuhisa Miyakawa, and Ryan Albee, and Lynda G Letzig, and Andreas F Lehner, and Michael A Scott, and John P Buchweitz, and Laura P James, and Patricia E Ganey, and Robert A Roth
January 1997, Toxicology and applied pharmacology,
Kazuhisa Miyakawa, and Ryan Albee, and Lynda G Letzig, and Andreas F Lehner, and Michael A Scott, and John P Buchweitz, and Laura P James, and Patricia E Ganey, and Robert A Roth
August 2004, Toxicological sciences : an official journal of the Society of Toxicology,
Kazuhisa Miyakawa, and Ryan Albee, and Lynda G Letzig, and Andreas F Lehner, and Michael A Scott, and John P Buchweitz, and Laura P James, and Patricia E Ganey, and Robert A Roth
January 1999, Archives of toxicology,
Kazuhisa Miyakawa, and Ryan Albee, and Lynda G Letzig, and Andreas F Lehner, and Michael A Scott, and John P Buchweitz, and Laura P James, and Patricia E Ganey, and Robert A Roth
April 1994, Toxicology and applied pharmacology,
Kazuhisa Miyakawa, and Ryan Albee, and Lynda G Letzig, and Andreas F Lehner, and Michael A Scott, and John P Buchweitz, and Laura P James, and Patricia E Ganey, and Robert A Roth
November 2004, Hepatology (Baltimore, Md.),
Kazuhisa Miyakawa, and Ryan Albee, and Lynda G Letzig, and Andreas F Lehner, and Michael A Scott, and John P Buchweitz, and Laura P James, and Patricia E Ganey, and Robert A Roth
August 1991, Biochemical pharmacology,
Kazuhisa Miyakawa, and Ryan Albee, and Lynda G Letzig, and Andreas F Lehner, and Michael A Scott, and John P Buchweitz, and Laura P James, and Patricia E Ganey, and Robert A Roth
November 2010, Toxicological sciences : an official journal of the Society of Toxicology,
Kazuhisa Miyakawa, and Ryan Albee, and Lynda G Letzig, and Andreas F Lehner, and Michael A Scott, and John P Buchweitz, and Laura P James, and Patricia E Ganey, and Robert A Roth
March 1996, Carcinogenesis,
Kazuhisa Miyakawa, and Ryan Albee, and Lynda G Letzig, and Andreas F Lehner, and Michael A Scott, and John P Buchweitz, and Laura P James, and Patricia E Ganey, and Robert A Roth
May 2020, Drug metabolism and disposition: the biological fate of chemicals,
Kazuhisa Miyakawa, and Ryan Albee, and Lynda G Letzig, and Andreas F Lehner, and Michael A Scott, and John P Buchweitz, and Laura P James, and Patricia E Ganey, and Robert A Roth
August 2006, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!