A Na+-activated K+ current in cultured brain stem neurones from chicks. 1989

S E Dryer, and J T Fujii, and A R Martin
Department of Physiology, School of Medicine, University of Colorado, Health Sciences Center, Denver 80262.

1. Patch-clamp techniques were used to study the properties of a Na+-activated K+ current (IK(Na) in neurones cultured from embryonic chick brain stem. 2. With whole-cell clamp, a depolarizing voltage command evoked an inward current that was followed by an outward current with two components, the first transient, the second sustained. 3. Tetrodotoxin (TTX, 1 microM) eliminated the inward current and the transient component of the outward current, without affecting the sustained outward current. In addition, the transient outward current was attenuated when all external Na+ was replaced by Li+, suggesting that it was activated specifically by Na+ entry into the cell. 4. The time course of the transient outward current was obtained by subtracting records obtained in Li+ solution from those obtained in Na+ solution. There was significant overlap between the decay of the inward current and the onset of the transient outward current. 5. When just after the peak of the transient outward current, the membrane was stepped to progressively more hyperpolarized levels, the tail currents associated with the current reversed polarity near the calculated K+ equilibrium potential. 6. 4-Aminopyridine (4-AP, 4 mM) abolished the transient outward current and approximately half of the sustained late current. Tetraethylammonium (TEA, 2 mM) had no effect on the transient current, but reduced the sustained current slightly. 7. Inside-out patches, made in LiCl bathing solutions, contained channels that were activated by exposing the cytoplasmic face of the patch to Na+. Channel activity continued as long as Na+ was present. 8. The single-channel currents reversed at the K+ equilibrium potential, and were associated with a main conductance that depended upon K+ concentration (about 50 pS with [K+]o = 15 mM, [K+]i = 5 mM, and 100 pS when [K+]i was increased to 75 mM). 9. The open probability of the channels increased with increasing cytoplasmic Na+ concentration. At [Na+]i = 150 mM (the maximum concentration tested), channels were open almost continuously. Open probability was considerably less at 50 mM, and still measureable at 20 mM. 10. The magnitude of IK(Na) and its overlap with the inward Na+ current indicate that these channels contribute significantly to the repolarizing phase of the action potential. In addition, the relation between channel activity and Na+ concentration suggests that the channels may make a measurable contribution to membrane conductance at resting intracellular Na+ concentrations.

UI MeSH Term Description Entries
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005944 Glucosamine 2-Amino-2-Deoxyglucose,Dona,Dona S,Glucosamine Sulfate,Hespercorbin,Xicil,2 Amino 2 Deoxyglucose,Sulfate, Glucosamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

S E Dryer, and J T Fujii, and A R Martin
August 1998, The Journal of physiology,
S E Dryer, and J T Fujii, and A R Martin
June 2016, Journal of neuroendocrinology,
S E Dryer, and J T Fujii, and A R Martin
April 1991, The Journal of physiology,
S E Dryer, and J T Fujii, and A R Martin
January 1985, Nature,
S E Dryer, and J T Fujii, and A R Martin
January 1991, Neuroscience letters,
S E Dryer, and J T Fujii, and A R Martin
October 2000, The Journal of experimental biology,
S E Dryer, and J T Fujii, and A R Martin
January 2017, eNeuro,
S E Dryer, and J T Fujii, and A R Martin
February 1987, Biochimica et biophysica acta,
S E Dryer, and J T Fujii, and A R Martin
August 1998, The Journal of physiology,
Copied contents to your clipboard!