MKT1, a nonessential Saccharomyces cerevisiae gene with a temperature-dependent effect on replication of M2 double-stranded RNA. 1987

R B Wickner
Section on Genetics of Simple Eukaryotes, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.

The MKT1 gene was defined by recessive alleles present in many laboratory strains of Saccharomyces cerevisiae that result in loss of M2 double-stranded RNA at temperatures above 30 degrees C if L-A-HN double-stranded RNA is present but not if L-A-H is present. I mapped MKT1 near TOP2 and isolated the gene by chromosome walking from TOP2. The gene location was defined by deletions, and a 2.8-kilobase transcript corresponding to the gene was detected. The recessive natural-variant mutations are not deletions as judged by Southern blots, but deletions of the MKT1 gene constructed in vitro and used to replace the normal gene surprisingly resulted in the same phenotype as that of the mkt1 natural variants, namely, a temperature-dependent maintenance of M2 double-stranded RNA. Thus the MKT1 gene product is only needed for M2 replication or maintenance at temperatures above 30 degrees C and if L-A-HN is present. The temperature dependence does not reflect the thermolability of a mutant gene product, as had previously been thought, nor does L-A double-stranded RNA need MKT1, as previously hypothesized. MKT1 may be involved in the process of packaging M2 double-stranded RNA. MKT1 is dispensable for host cell growth, mating, meiosis, and spore germination.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D012330 RNA, Double-Stranded RNA consisting of two strands as opposed to the more prevalent single-stranded RNA. Most of the double-stranded segments are formed from transcription of DNA by intramolecular base-pairing of inverted complementary sequences separated by a single-stranded loop. Some double-stranded segments of RNA are normal in all organisms. Double-Stranded RNA,Double Stranded RNA,RNA, Double Stranded
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

R B Wickner
September 1990, Molecular and cellular biology,
R B Wickner
January 1985, Antibiotiki i meditsinskaia biotekhnologiia = Antibiotics and medical biotechnology,
Copied contents to your clipboard!