Molecular action mechanism of spider toxin on glutamate receptor: role of 2,4-dihydroxyphenylacetic acid in toxin molecule. 1987

H Pan-Hou, and Y Suda
Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan.

Joro spider toxin (JSTX) isolated from Nephila clavata was shown to inhibit L-glutamate binding to rat brain synaptic membranes in a dose-dependent manner. 2,4-Dihydroxyphenylacetic acid (2,4-DHPA), a common moiety of spider toxins, also inhibited specifically L-glutamate binding at a concentration similar to that of the toxin. The binding activity inhibited by 2,4-DHPA or JSTX was recoverable on addition of ferric compound. These results suggest that 2,4-DHPA is a functional moiety in the toxin molecule and the biological action of spider toxin is explained by direct interaction with an Fe-S center which is known to play an important role for the glutamate binding.

UI MeSH Term Description Entries
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010648 Phenylacetates Derivatives of phenylacetic acid. Included under this heading are a variety of acid forms, salts, esters, and amides that contain the benzeneacetic acid structure. Note that this class of compounds should not be confused with derivatives of phenyl acetate, which contain the PHENOL ester of ACETIC ACID. Benzeneacetates,Benzeneacetic Acids,Phenylacetic Acids,Acids, Benzeneacetic,Acids, Phenylacetic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D005290 Ferric Compounds Inorganic or organic compounds containing trivalent iron. Compounds, Ferric
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001180 Arthropod Venoms Venoms from animals of the phylum ARTHROPODA. Those most investigated are from SCORPIONS and SPIDERS of the class Arachnidae and from ant, bee, and wasp families of the INSECTA order HYMENOPTERA. The venoms contain protein toxins, enzymes, and other bioactive substances and may be lethal to man. Arachnid Toxin,Arachnid Toxins,Arachnid Venoms,Hymenoptera Venom,Hymenoptera Venoms,Insect Venom,Insect Venoms,Arachnid Venom,Arthropod Venom,Toxin, Arachnid,Toxins, Arachnid,Venom, Arachnid,Venom, Arthropod,Venom, Hymenoptera,Venom, Insect,Venoms, Arachnid,Venoms, Arthropod,Venoms, Hymenoptera,Venoms, Insect
D013111 Spider Venoms Venoms of arthropods of the order Araneida of the ARACHNIDA. The venoms usually contain several protein fractions, including ENZYMES, hemolytic, neurolytic, and other TOXINS, BIOLOGICAL. Araneid Venoms,Spider Toxin,Spider Toxins,Tarantula Toxin,Tarantula Toxins,Tarantula Venom,Araneid Venom,Spider Venom,Tarantula Venoms,Toxin, Spider,Toxin, Tarantula,Toxins, Spider,Toxins, Tarantula,Venom, Araneid,Venom, Spider,Venom, Tarantula,Venoms, Araneid,Venoms, Spider,Venoms, Tarantula

Related Publications

H Pan-Hou, and Y Suda
January 1984, Journal de physiologie,
H Pan-Hou, and Y Suda
May 1992, Brain research. Molecular brain research,
H Pan-Hou, and Y Suda
November 1997, Masui. The Japanese journal of anesthesiology,
H Pan-Hou, and Y Suda
January 1991, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
H Pan-Hou, and Y Suda
October 1985, Gigiena i sanitariia,
H Pan-Hou, and Y Suda
January 1983, Advances in biochemical psychopharmacology,
H Pan-Hou, and Y Suda
January 1976, Postepy higieny i medycyny doswiadczalnej,
H Pan-Hou, and Y Suda
October 1990, Seikagaku. The Journal of Japanese Biochemical Society,
Copied contents to your clipboard!