Spider toxin (JSTX) on the glutamate synapse. 1984

N Kawai, and A Miwa, and M Saito, and H S Pan-Hou, and M Yoshioka

A new neurotoxin (JSTX) was separated from spider (Nephila clavata, Joro spider) venom. JSTX irreversibly suppressed the excitatory postsynaptic potential (EPSP) and the glutamate potential in the lobster neuromuscular junction with high degree of specificity. The threshold concentration for suppressing EPSPs corresponds to a small fraction of the toxin in a venom gland, roughly estimated as low as 10(-10) M/l. 10(-10) M/l. In the giant synapse of squid stellate ganglion JSTX suppressed EPSPs without affecting the antidromic response. Glutamate-induced membrane depolarization was blocked by JSTX. In mammalian brain slice preparation, JSTX suppressed the orthodromic spike response but failed to affect on the antidromic spike in the hippocampal pyramidal neuron of CA1 and CA3 region. The above results strongly support the view that the squid giant synapse and synapses in the hippocampal pyramidal neuron are mediated by glutamate.

UI MeSH Term Description Entries
D008121 Nephropidae Family of large marine CRUSTACEA, in the order DECAPODA. These are called clawed lobsters because they bear pincers on the first three pairs of legs. The American lobster and Cape lobster in the genus Homarus are commonly used for food. Clawed Lobsters,Homaridae,Homarus,Lobsters, Clawed,Clawed Lobster,Lobster, Clawed
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001180 Arthropod Venoms Venoms from animals of the phylum ARTHROPODA. Those most investigated are from SCORPIONS and SPIDERS of the class Arachnidae and from ant, bee, and wasp families of the INSECTA order HYMENOPTERA. The venoms contain protein toxins, enzymes, and other bioactive substances and may be lethal to man. Arachnid Toxin,Arachnid Toxins,Arachnid Venoms,Hymenoptera Venom,Hymenoptera Venoms,Insect Venom,Insect Venoms,Arachnid Venom,Arthropod Venom,Toxin, Arachnid,Toxins, Arachnid,Venom, Arachnid,Venom, Arthropod,Venom, Hymenoptera,Venom, Insect,Venoms, Arachnid,Venoms, Arthropod,Venoms, Hymenoptera,Venoms, Insect
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013111 Spider Venoms Venoms of arthropods of the order Araneida of the ARACHNIDA. The venoms usually contain several protein fractions, including ENZYMES, hemolytic, neurolytic, and other TOXINS, BIOLOGICAL. Araneid Venoms,Spider Toxin,Spider Toxins,Tarantula Toxin,Tarantula Toxins,Tarantula Venom,Araneid Venom,Spider Venom,Tarantula Venoms,Toxin, Spider,Toxin, Tarantula,Toxins, Spider,Toxins, Tarantula,Venom, Araneid,Venom, Spider,Venom, Tarantula,Venoms, Araneid,Venoms, Spider,Venoms, Tarantula

Related Publications

N Kawai, and A Miwa, and M Saito, and H S Pan-Hou, and M Yoshioka
January 1990, Journal of neural transmission. General section,
N Kawai, and A Miwa, and M Saito, and H S Pan-Hou, and M Yoshioka
November 1983, Brain research,
N Kawai, and A Miwa, and M Saito, and H S Pan-Hou, and M Yoshioka
January 1989, Brain research,
N Kawai, and A Miwa, and M Saito, and H S Pan-Hou, and M Yoshioka
January 1990, Journal of neural transmission. General section,
N Kawai, and A Miwa, and M Saito, and H S Pan-Hou, and M Yoshioka
March 1988, Chemical & pharmaceutical bulletin,
N Kawai, and A Miwa, and M Saito, and H S Pan-Hou, and M Yoshioka
October 1991, Neuroscience research,
N Kawai, and A Miwa, and M Saito, and H S Pan-Hou, and M Yoshioka
May 1992, Brain research. Molecular brain research,
N Kawai, and A Miwa, and M Saito, and H S Pan-Hou, and M Yoshioka
October 1987, Neuroscience research,
N Kawai, and A Miwa, and M Saito, and H S Pan-Hou, and M Yoshioka
August 1987, Brain research,
Copied contents to your clipboard!