Pharmacological inhibition of infectivity of HTLV-III in vitro. 1985

H Mitsuya, and S Matsushita, and M E Harper, and S Broder

Acquired immunodeficiency syndrome (AIDS) is a pandemic immunosuppressive disease that predisposes to life-threatening opportunistic infections and unusual forms of neoplasms. A recently discovered member of the human T-lymphotrophic virus (HTLV) family, designated HTLV-III, has been shown to be the etiological agent of AIDS. We have shown previously that a trypanosomicidal drug, suramin, can block the in vitro infectivity and cytopathic effect of HTLV-III at doses that are attainable in human beings. In the present work we report our findings that suramin can block the cytopathic effect of HTLV-III even after a defined exposure of the target helper/inducer T-cells to the virus and that the T-cells protected by suramin remain immunologically functional.

UI MeSH Term Description Entries
D007136 Immunoglobulins Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses. Globulins, Immune,Immune Globulin,Immune Globulins,Immunoglobulin,Globulin, Immune
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003588 Cytopathogenic Effect, Viral Visible morphologic changes in cells infected with viruses. It includes shutdown of cellular RNA and protein synthesis, cell fusion, release of lysosomal enzymes, changes in cell membrane permeability, diffuse changes in intracellular structures, presence of viral inclusion bodies, and chromosomal aberrations. It excludes malignant transformation, which is CELL TRANSFORMATION, VIRAL. Viral cytopathogenic effects provide a valuable method for identifying and classifying the infecting viruses. Cytopathic Effect, Viral,Viral Cytopathogenic Effect,Cytopathic Effects, Viral,Cytopathogenic Effects, Viral,Effect, Viral Cytopathic,Effect, Viral Cytopathogenic,Effects, Viral Cytopathic,Effects, Viral Cytopathogenic,Viral Cytopathic Effect,Viral Cytopathic Effects,Viral Cytopathogenic Effects
D006377 T-Lymphocytes, Helper-Inducer Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions. Helper Cell,Helper Cells,Helper T Cell,Helper-Inducer T-Lymphocytes,Inducer Cell,Inducer Cells,T-Cells, Helper-Inducer,T-Lymphocytes, Helper,T-Lymphocytes, Inducer,Helper T-Cells,Cell, Helper T,Cells, Helper T,Helper Inducer T Lymphocytes,Helper T Cells,Helper T-Cell,Helper T-Lymphocyte,Helper T-Lymphocytes,Helper-Inducer T-Cell,Helper-Inducer T-Cells,Helper-Inducer T-Lymphocyte,Inducer T-Lymphocyte,Inducer T-Lymphocytes,T Cell, Helper,T Cells, Helper,T Cells, Helper Inducer,T Lymphocytes, Helper,T Lymphocytes, Helper Inducer,T Lymphocytes, Inducer,T-Cell, Helper,T-Cell, Helper-Inducer,T-Cells, Helper,T-Lymphocyte, Helper,T-Lymphocyte, Helper-Inducer,T-Lymphocyte, Inducer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D013498 Suramin A polyanionic compound with an unknown mechanism of action. It is used parenterally in the treatment of African trypanosomiasis and it has been used clinically with diethylcarbamazine to kill the adult Onchocerca. (From AMA Drug Evaluations Annual, 1992, p1643) It has also been shown to have potent antineoplastic properties. Germanin,Moranil,Naganin,Naganol,Naphuride,Suramin Sodium,Suramin, Hexasodium Salt,Suramin, Monosodium Salt,Hexasodium Salt Suramin,Monosodium Salt Suramin,Salt Suramin, Hexasodium,Salt Suramin, Monosodium,Sodium, Suramin

Related Publications

H Mitsuya, and S Matsushita, and M E Harper, and S Broder
November 1985, The New England journal of medicine,
H Mitsuya, and S Matsushita, and M E Harper, and S Broder
December 1986, The Journal of infectious diseases,
H Mitsuya, and S Matsushita, and M E Harper, and S Broder
March 1986, Proceedings of the National Academy of Sciences of the United States of America,
H Mitsuya, and S Matsushita, and M E Harper, and S Broder
January 1985, Lancet (London, England),
H Mitsuya, and S Matsushita, and M E Harper, and S Broder
November 1985, Biochemical pharmacology,
H Mitsuya, and S Matsushita, and M E Harper, and S Broder
December 1985, Journal of clinical chemistry and clinical biochemistry. Zeitschrift fur klinische Chemie und klinische Biochemie,
H Mitsuya, and S Matsushita, and M E Harper, and S Broder
November 1985, Lancet (London, England),
H Mitsuya, and S Matsushita, and M E Harper, and S Broder
January 1987, Bollettino dell'Istituto sieroterapico milanese,
H Mitsuya, and S Matsushita, and M E Harper, and S Broder
January 1962, Nature,
Copied contents to your clipboard!