Taurocholate transport and Na+-K+-ATPase activity in fetal and neonatal rat liver plasma membrane vesicles. 1986

F J Suchy, and J C Bucuvalas, and A L Goodrich, and M S Moyer, and B L Blitzer

The ontogenesis of Na+-K+-ATPase activity and Na+-taurocholate cotransport was studied in basolateral plasma membrane vesicles from fetal and neonatal rat liver. Membrane vesicles from each age group were 30-fold enriched in the basolateral marker enzyme Na+-K+-ATPase, 4- to 7-fold enriched in the bile canalicular membrane marker enzymes alkaline phosphatase and Mg2+ ATPase, and not significantly enriched in activities of marker enzymes for intracellular organelles. Na+-K+-ATPase activity was significantly lower in basolateral membranes from late fetal (day 21-22) and neonatal (day 1) rat liver. Kinetic analysis of Na+-K+-ATPase activity at various concentrations of ATP revealed that the maximum velocity of enzyme reaction (Vmax) for Na+-K+-ATPase was 70 and 90% of adult activity in the fetus and the neonate, respectively. The ATP Km was significantly lower in the neonate than the adult, suggesting a higher affinity of the neonatal enzyme for ATP. In contrast to the early maturation of Na+-K+-ATPase, transport of taurocholate was markedly lower in both fetal and neonatal vesicles compared with the adult. Taurocholate uptake on day 19 of gestation did not differ in the presence of a Na+ or K+ gradient, and uphill transport, as indicated by an overshoot, did not occur. On day 20 taurocholate uptake was stimulated by a Na+ compared with a K+ gradient, and accumulation of isotope above equilibrium was demonstrated. Na+-dependent transport of taurocholate by late fetal (day 22) and neonatal vesicles was saturable but the Vmax at each age was significantly lower and the apparent Km higher in developing compared with adult membrane vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

F J Suchy, and J C Bucuvalas, and A L Goodrich, and M S Moyer, and B L Blitzer
December 1984, Journal of bioenergetics and biomembranes,
F J Suchy, and J C Bucuvalas, and A L Goodrich, and M S Moyer, and B L Blitzer
June 1985, The American journal of physiology,
F J Suchy, and J C Bucuvalas, and A L Goodrich, and M S Moyer, and B L Blitzer
July 1989, The Journal of pharmacology and experimental therapeutics,
F J Suchy, and J C Bucuvalas, and A L Goodrich, and M S Moyer, and B L Blitzer
October 1990, European journal of biochemistry,
F J Suchy, and J C Bucuvalas, and A L Goodrich, and M S Moyer, and B L Blitzer
October 1991, Hepatology (Baltimore, Md.),
F J Suchy, and J C Bucuvalas, and A L Goodrich, and M S Moyer, and B L Blitzer
September 1990, The American journal of physiology,
F J Suchy, and J C Bucuvalas, and A L Goodrich, and M S Moyer, and B L Blitzer
October 1989, Hepatology (Baltimore, Md.),
F J Suchy, and J C Bucuvalas, and A L Goodrich, and M S Moyer, and B L Blitzer
March 1984, The Journal of clinical investigation,
F J Suchy, and J C Bucuvalas, and A L Goodrich, and M S Moyer, and B L Blitzer
October 1974, Biochimica et biophysica acta,
F J Suchy, and J C Bucuvalas, and A L Goodrich, and M S Moyer, and B L Blitzer
July 1989, Journal of hepatology,
Copied contents to your clipboard!