Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+-independent transport system. 1984

M Inoue, and R Kinne, and T Tran, and I M Arias

To elucidate the mechanism of vectorial translocation of bile acids in the liver, taurocholate transport was studied in isolated liver canalicular membrane vesicles by a rapid filtration method. The membrane vesicles revealed temperature-dependent, Na+-independent transport of taurocholate into an osmotically reactive intravesicular space. In the absence of sodium, taurocholate uptake followed saturation kinetics (apparent Km for taurocholate = 43 microM and Vmax = 0.22 nmol/mg protein X 20 s at 37 degrees C) and was inhibited by cholate and probenecid. Transstimulation by unlabeled taurocholate was also demonstrated. When the electrical potential difference across the membranes was altered by anion replacement, a more positive intravesicular potential stimulated, and a more negative potential inhibited, transport of taurocholate by the vesicles. Valinomycin-induced K+-diffusion potential (vesicle inside-positive) enhanced the rate of taurocholate uptake that was not altered by imposed pH gradients. These results indicate that rat liver canalicular plasma membrane contains a sodium-independent taurocholate transport system that translocates the bile acid as an anion across the membrane. In intact hepatocytes, the electrical potential difference across the canalicular membrane probably provides the driving force for taurocholate secretion. The contribution of nonionic diffusion to taurocholate secretion appears to be minimal.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

M Inoue, and R Kinne, and T Tran, and I M Arias
October 1991, Hepatology (Baltimore, Md.),
M Inoue, and R Kinne, and T Tran, and I M Arias
July 1986, The Journal of clinical investigation,
M Inoue, and R Kinne, and T Tran, and I M Arias
October 1991, Gastroenterology,
M Inoue, and R Kinne, and T Tran, and I M Arias
August 1991, Proceedings of the National Academy of Sciences of the United States of America,
M Inoue, and R Kinne, and T Tran, and I M Arias
December 1984, Journal of bioenergetics and biomembranes,
M Inoue, and R Kinne, and T Tran, and I M Arias
February 1993, The Journal of biological chemistry,
M Inoue, and R Kinne, and T Tran, and I M Arias
June 1985, The American journal of physiology,
M Inoue, and R Kinne, and T Tran, and I M Arias
December 1991, Hepatology (Baltimore, Md.),
Copied contents to your clipboard!