[Expression of Erwinia chrysanthemi ENA49 uvr gene in Escherichia coli K12 cells]. 1988

V A Prokulevich, and Iu K Fomichev

The uvrA gene of Erwinia chrysanthemi ENA49 similar to uvrA gene of Escherichia coli K12 has been cloned in vivo in Escherichia coli AB1886 uvrA6 cells using the plasmid pULB113 (RP4mini Mu). The presence of pULB113 carrying uvrA gene of Erwinia in Escherichia coli K12 uvrA- cells resulted in suppression of this mutation while uvrB and uvrC are not suppressed by this locus. The genetic control of excision repair of UV-damage in Erwinia chrysanthemi ENA49 is concluded to be similar to the one in Escherichia coli K12.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011740 Pyrimidine Dimers Dimers found in DNA chains damaged by ULTRAVIOLET RAYS. They consist of two adjacent PYRIMIDINE NUCLEOTIDES, usually THYMINE nucleotides, in which the pyrimidine residues are covalently joined by a cyclobutane ring. These dimers block DNA REPLICATION. Cyclobutane Pyrimidine Dimer,Cyclobutane-Pyrimidine Dimer,Cytosine-Thymine Dimer,Pyrimidine Dimer,Thymine Dimer,Thymine Dimers,Cyclobutane-Pyrimidine Dimers,Cytosine-Thymine Dimers,Thymine-Cyclobutane Dimer,Thymine-Thymine Cyclobutane Dimer,Cyclobutane Dimer, Thymine-Thymine,Cyclobutane Dimers, Thymine-Thymine,Cyclobutane Pyrimidine Dimers,Cytosine Thymine Dimer,Cytosine Thymine Dimers,Pyrimidine Dimer, Cyclobutane,Pyrimidine Dimers, Cyclobutane,Thymine Cyclobutane Dimer,Thymine Thymine Cyclobutane Dimer,Thymine-Cyclobutane Dimers,Thymine-Thymine Cyclobutane Dimers
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004885 Erwinia A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria whose organisms are associated with plants as pathogens, saprophytes, or as constituents of the epiphytic flora.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

V A Prokulevich, and Iu K Fomichev
May 1987, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
V A Prokulevich, and Iu K Fomichev
January 1993, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
V A Prokulevich, and Iu K Fomichev
January 1986, Journal of general microbiology,
V A Prokulevich, and Iu K Fomichev
April 1986, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
V A Prokulevich, and Iu K Fomichev
June 1979, Food and cosmetics toxicology,
V A Prokulevich, and Iu K Fomichev
May 1985, Zhonghua Minguo wei sheng wu ji mian yi xue za zhi = Chinese journal of microbiology and immunology,
V A Prokulevich, and Iu K Fomichev
August 1989, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
V A Prokulevich, and Iu K Fomichev
April 1986, Journal of bacteriology,
V A Prokulevich, and Iu K Fomichev
September 1984, Journal of bacteriology,
Copied contents to your clipboard!