Distinct roles for adhesion molecules during innervation of embryonic chick muscle. 1988

L Landmesser, and L Dahm, and K Schultz, and U Rutishauser
Department of Physiology and Neurobiology, University of Connecticut, Storrs 06268.

In vitro studies have suggested that the cell adhesion molecules NCAM and G4/L1 contribute to a variety of events during neural development. We have directly tested the role played by these molecules in the process of initial nerve ingrowth and ramification in the embryonic chick iliofibularis muscle by in ovo injections of specific adhesion-blocking antibodies and analysis of the resultant nerve branching pattern in muscle whole mounts. Antibodies against both molecules produced axonal defasciculation, which resulted in an enhanced transverse projection to the fast region of the muscle. In the case of anti-G4/L1, we also observed a large increase in the number of side branches that form from nerve trunks in the slow region and an enhancement of nerve branching in the fast region. Conversely, anti-NCAM produced a striking decrease in both the number and length of side branches in the slow region, and a reduction in nerve branching in the fast region. A similar reduction of nerve branching was obtained following injection of an endosialidase, which removes sialic acid from NCAM, and which was observed to enhance fiber-fiber apposition, presumably by increasing cell adhesion. Based on their biochemical properties in vitro and their in vivo distribution, both NCAM and G4/L1 are in a position to contribute to axon-axon adhesive interactions, whereas NCAM would be expected to also promote axon-myotube interactions. Our observations in fact indicate that these two adhesion molecules play different but complementary roles during muscle innervation and, specifically, that axon-axon fasciculation is influenced by both NCAM and G4/L1 in an anatomically distinct manner to regulate the overall pattern of nerve branching and that NCAM-mediated axon-myotube interactions are necessary for the attainment of the normal stereotyped pattern of nerve branching in both fast and slow regions of this muscle.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D015815 Cell Adhesion Molecules Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis. Cell Adhesion Molecule,Intercellular Adhesion Molecule,Intercellular Adhesion Molecules,Leukocyte Adhesion Molecule,Leukocyte Adhesion Molecules,Saccharide-Mediated Cell Adhesion Molecules,Saccharide Mediated Cell Adhesion Molecules,Adhesion Molecule, Cell,Adhesion Molecule, Intercellular,Adhesion Molecule, Leukocyte,Adhesion Molecules, Cell,Adhesion Molecules, Intercellular,Adhesion Molecules, Leukocyte,Molecule, Cell Adhesion,Molecule, Intercellular Adhesion,Molecule, Leukocyte Adhesion,Molecules, Cell Adhesion,Molecules, Intercellular Adhesion,Molecules, Leukocyte Adhesion

Related Publications

L Landmesser, and L Dahm, and K Schultz, and U Rutishauser
January 2012, PloS one,
L Landmesser, and L Dahm, and K Schultz, and U Rutishauser
May 1999, The International journal of developmental biology,
L Landmesser, and L Dahm, and K Schultz, and U Rutishauser
September 1981, Developmental biology,
L Landmesser, and L Dahm, and K Schultz, and U Rutishauser
June 1997, Developmental biology,
L Landmesser, and L Dahm, and K Schultz, and U Rutishauser
June 1972, FEBS letters,
L Landmesser, and L Dahm, and K Schultz, and U Rutishauser
December 1979, Journal of embryology and experimental morphology,
L Landmesser, and L Dahm, and K Schultz, and U Rutishauser
January 1982, Current eye research,
L Landmesser, and L Dahm, and K Schultz, and U Rutishauser
January 2020, Frontiers in cell and developmental biology,
L Landmesser, and L Dahm, and K Schultz, and U Rutishauser
April 1988, Development (Cambridge, England),
Copied contents to your clipboard!